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Abstract

Multi-agent pathfinding (MAPF) is the problem of moving a
group of agents to a set of target destinations while avoiding
collisions. In this work, we study the online version of MAPF
where new agents appear over time. Several variants of online
MAPF are defined and analyzed theoretically, showing that
it is not possible to create an optimal online MAPF solver.
Nevertheless, we propose effective online MAPF algorithms
that balance solution quality, runtime, and the number of plan
changes an agent makes during execution.

Introduction
Multi-agent pathfinding (MAPF) is the problem of mov-
ing a group of agents to a set of target destinations while
avoiding collisions (Silver 2005). MAPF has applications
in robotics, avionics, digital entertainment, and more, and
it has attracted significant research focus from various re-
search communities in recent years (Pallottino et al. 2007;
Erdem et al. 2013; Surynek et al. 2016; Standley 2010;
Sharon et al. 2015).

Most work on MAPF has focused on finding a plan for
all the agents before the agents start to move (Felner et al.
2017; Surynek et al. 2016; Yu and LaValle 2012). The agents
are then expected to follow that plan until eventually each
agent reaches its designated goal. We refer to this a priori
planning problem as offline MAPF. In this work, we consider
an online version of MAPF, where new agents may appear
while the other agents are following a previously generated
plan.

Online MAPF is a natural generalization of offline MAPF
with applications in controlling fleets of vehicles or teams
of robots. For example, consider the autonomous intersec-
tion management (AIM) project by Dresner et al. (2008).
An autonomous agent controls an intersection, and driver
agents that wish to pass through the intersection must follow
the intersection manager’s directions. Once an agent passes
the intersection, it leaves the system, while new agents may
enter the intersection. The intersection manager, thus, is ac-
tually solving an online MAPF problem. The general ap-
proach they used is a first-come first-serve approach, which
is clearly not optimal.
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Online MAPF is related to the lifelong MAPF setting
studied by Ma et al. (2017). In lifelong MAPF the set of
agents do not change, but over time the problem solver re-
ceives a sequence of navigation tasks that they need to per-
form (e.g., get from one location to another). Thus, task as-
signment plays an important role in lifelong MAPF. In our
setting, we focus on the intersection problem, where new
agents can appear, and there is no need for task assignment
as every new agent is associated with a specific start and
goal.

The first contribution of this work is in a formal defini-
tion and analysis of the online MAPF problem. We discuss
several possible objective functions and show equivalences
between them. Several variants of online MAPF are defined
and analyzed, showing which variants allow creating com-
plete and optimal solvers and which do not.

Our second contribution is several practical solvers for
online MAPF and the discussion on their properties. In
particular, we propose a SAT-based solver using the Picat
language and a solver based on the Conflict-Based Search
(CBS) (Sharon et al. 2015). To minimize the number of
times agents change their routes, we introduce the Online
Independence Detection algorithm that biases the resulting
plan to cause fewer disruptions to the currently executed
plans, while still guaranteeing a high quality solution.

The third contribution of this work is an online MAPF
algorithm that allows trading off solution quality for the
amount of disruptions to other agents. We evaluate all the
proposed algorithms on grids of different size and with a
varying number of agents and obstacles. The results show
the trade-offs for the different solvers and problem parame-
ters.

Background: Offline MAPF
An offline MAPF problem accepts as an input a graph G =
(V,E) and a set of agents a1, . . . an, such that each agent
ai is associated with an initial location si and goal location
gi. Time is discretized, and in every time step each agent
can either move from its location to an adjacent location, or
wait in its current location. A solution to offline MAPF is a
plan π that consists of a sequence of wait/move actions for
each agent. Let πi[j] denote the location agent i will reach
after performing the first j actions in the plan π, ignoring
all other agents. The main constraint in offline MAPF is that
the agents must not collide, i.e., occupy the same vertex or



edge at the same time. A plan π has a collision if there is a
time step j in which there are two agents i1 and i2 that are
planned to occupy the same location or traverse the same
edge. Formally, agent i1 and i2 collide at time j in plan π if

(πi1 [j] = πi2 [j])∨(
(πi1 [j] = πi2 [j + 1]) ∧ (πi1 [j + 1] = πi2 [j])

)
A solution to an offline MAPF is such a plan π that has

no collisions. We refer to such a plan as a valid plan, and
denote by |πi| the number of actions in πi. A given offline
MAPF problem may have many solutions, and not all are
equally preferable. It is common to associate a MAPF solu-
tion π with a cost according to some objective function, so
that solutions with minimal cost are preferred. The two most
common objective functions are makespan and sum of costs
(SOC). The former is the time required to have all agent
reach their goals (Makespan(π)=maxni=1 |πi|), and the lat-
ter is the sum of times required for each agent to reach its
goal (the sum of costs(π)=

∑n
i=1 |πi|).

Problem Definition
An online MAPF problem starts with an offline MAPF prob-
lem, which an online MAPF solver must first solve. Then,
while the agents execute the generated plan, a sequence of
new agents appear on the map. The ith new agent is defined
by the triplet 〈ti, si, gi〉, where ti is the time step in which
the agent appears, si is its initial location, and gi is its goal
location. Importantly, this sequence of new agents is given
to the problem solver online, such that only at time ti it is
revealed that a new agent wishes to get from si to gi. Thus,
this part of the problem input – the new agents – is referred
to as the online input of an online MAPF problem, while the
graph and the initial set of agents is referred to as the offline
input.

A solution to an online MAPF problem is a sequence of
valid plans Π = 〈π0, π1, . . . , πm〉, where m is the num-
ber of times a new agent appears, π0 is the plan created
for the offline input, and πi for i > 0 is the plan created
when the ith new agent appears at time ti. A partial plan
πi[x : y] is the part of the plan πi that is planned for time
steps x, x + 1, . . . , y. We assume that the agents follow the
most recently generated plan, i.e., after the ith agent appears,
all agents follow plan πi until the (i + 1)th appears, af-
ter which the agents follow plan πi+1. Thus, the plan the
agents end up executing, denoted Ex[Π], can be written as
Ex[Π] = π0[0 : t1] ◦ π1[t1+1 : t2] ◦ . . . ◦ πm[tm+1 :∞],
where ◦ represents concatenation of partial plans. We refer
to Ex[Π] as the execution of Π. A solution to an online
MAPF problem is a sequence of plans Π such that Ex[Π]
forms a valid plan (i.e., without collisions).

Online MAPF Variants
One can imagine many variants of online MAPF, in particu-
lar with respect to (1) what happens when an agent reaches
the goal and (2) what happens when a new agent appears in
its initial location.

Consider first the question of what happens when an agent
reaches its goal. One option is that when an agent reaches
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Figure 1: An example of an
instance that is solvable by
the offline optimal solver,
but cannot be solved by
any online MAPF solver.
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Figure 2: An example of an
instance in which no on-
line MAPF solver can re-
turn the optimal solution.

its goal it stays there. This results in a setting similar to the
mentioned above lifelong MAPF (Ma et al. 2017). A differ-
ent option is that an agent disappears when reaching its goal.
Such an assumption makes sense when the goal is associated
with some location that the agent can actually enter and stay
there without interfering others, e.g., a private parking space.

Orthogonal to the decision of what happens to an agent
when it reaches the goal is the decision of what happens
when a new agent appears. One option is to assume that a
new agent immediately appears in its initial location. This
can cause unavoidable collisions, as another agent may al-
ready be in that location when the new agent appears. A dif-
ferent assumption regarding new agents is that when a new
agent appears it needs to perform a move action in order
to enter its start location, and it can also wait as long as it
wishes before doing so. This assumption also corresponds
to a private parking space scenario, where the agent can wait
in it, e.g., if it sees that its initial location in the graph is al-
ready occupied. We refer to this private place as the agent’s
garage.

Consider the assumption that an agent disappears at its
goal and the assumption that the agent appears in its garage.
These correspond to a scenario where there is a private part
of the world that is not managed in a centralized way, and
the agents start from and wish to go to such private locations.
To do so, the agents must pass through a public area that is
controlled by some autonomous agent, e.g., an autonomous
driving scenario where only the traffic in the city centers is
fully automatized (Dresner and Stone 2008).

Next, we analyze the online MAPF problem under each of
these four combinations of assumptions – staying at the goal
or disappearing and appearing in the grid or in the garage.

Problem Analysis
A common way to analyze online problems and algorithms
is to consider the behavior of an offline optimal solver for
this problem. An offline optimal solver is one that accepts
all the inputs to the online problem upfront. In our case, an
offline optimal solver for online MAPF knows in advance
when new agents will arrive and what will be their start and
goal locations. One can easily modify any offline MAPF
solver to serve as an offline optimal solver. Clearly, an of-
fline optimal solver cannot be used in practice, but it is use-
ful for analysis as clearly no online MAPF solver can do any
better than the offline optimal solver.



Appears Stay at goal Disappear

In grid Collisions Collisions& Incomplete
(Obs. 1)

In garage Incomplete Complete (Prop. 2)(Obs. 1)

Table 1: Summary of theoretical results for online MAPF

Observation 1. If agents do not disappear when they reach
their goals, then there are problem instances that are solv-
able by an offline optimal solver but cannot be solved by any
complete online MAPF solver.

Proof. Consider an online MAPF problem with 3 agents,
situated in the grid given in Figure 1. S1, S2, and S3 are the
start locations of agents 1, 2, and 3, respectively. Similarly,
G1,G2, andG3 are the agents’ goal locations. Now, assume
that agent 1 appears first, then agent 2, and finally agent 3.
An offline optimal solver will have agent 2 wait in its private
space until agent 3 appears and reaches its goal. By contrast,
any complete online MAPF solver will have to eventually
decide to move agent 2 to its goal. We can construct an on-
line MAPF problem that will have agent 3 appear only after
this has occurred. When this occurs, the problem becomes
unsolvable, as agent 3 can only reach its goal if agent 2 has
not entered its starting location.

Proposition 2. An online MAPF problem where agents dis-
appear at the goal and where new agents may wait before
entering their initial location is solvable iff the offline part
of the problem is solvable, assuming there exists a path for
each agent from its initial location to its goal location.

Proof. If the offline part is solvable, we can then just let the
new agents wait in their garages until all of the other agents
disappear. The problem is then reduced to single agent short-
est path. The other implication is trivial.

Since assuming that an agent appears immediately on the
grid may cause unavoidable collisions, and assuming that
the agent stays at the goal may lead to instances that no on-
line solver can solve (Observation 1), we decided to focus
the rest of this paper on online MAPF where the new agents
appear in their garage and agents that reach their goal disap-
pear. Note that waiting in a garage to enter the graph counts
as an action in the plan. Table 1 summarizes our observa-
tions for the four combination of assumptions.

Objective Functions
Now we ask the question of how to evaluate a solution
Π for an online MAPF problem. Porting the sum of costs
measure from offline MAPF to online MAPF is straightfor-
ward: the sum of costs of an online MAPF solution Π =
〈π0, π1, . . . , πm〉 is defined as the sum of costs of the ex-
ecuted plan Ex[Π], i.e., f1(Π) =

∑
i∈A |Ex[Π]i|, where

|Ex[Π]i| is the number of steps the ith agents took until it
reached its goal.

Porting the makespan measure, however, is problematic,
since makespan is defined as the arrival time of the last
agent to its goal position. Due to the online nature of on-
line MAPF, agents may keep emerging infinitely, resulting
in Makespan= ∞, which is clearly undesirable. We now
propose several possible objective functions intended to fill
this gap. Let A be the set of agents, NotAtGoal(t) be the
number of agents that are not at their goals at time step t yet,
and oi be the length of the optimal (shortest) path for the
ith agent when no other agent is present. For a plan Π and
its execution Ex[Π], |Ex[π]i| is the number of steps the ith
agent took until it reached its goal.
• Sum of agents not at goal over time.

f2(Π) =

∞∑
t=1

NotAtGoal(t)

• Sum of times over individual cost.
f3(Π) =

∑
i∈A
|Ex[Π]i| − oi

Definition 3 (Objective Function Equivalence). A pair of
objective functions fx and fy are equivalent if for every on-
line MAPF problem and every pair of solutions Π and Π′ for
that problem, we have

fx(Π) ≤ fx(Π′)⇔ fy(Π) ≤ fy(Π′)

Proposition 4. All the objective functions listed above are
equivalent to the sum of costs.

Proof. “f1 ⇔ f2” Let χti be 1 if the ith agent is not yet
at its goal location at time t, otherwise 0. Then f1(Π) =∑
i∈A

∑∞
t=1 χ

t
i and f2(Π) =

∑∞
t=1

∑
i∈A χ

t
i. Hence, by

swapping the sums, f1(Π) = f2(Π) for arbitrary Π.
“f1 ⇔ f3” Since f1(Π) =

∑
i∈A |Ex[Π]i| =∑

i∈A |Ex[Π]i|−oi+
∑
i∈A oi = f3(Π)+

∑
i∈A oi, and be-

cause
∑
i∈A oi is a constant depending just on the problem

and not on the solution, it holds that f1(Πx) ≤ f1(Πy) ⇔
f3(Πx) ≤ f3(Πy) for arbitrary plans Πx,Πy .

Thus, we only discuss the sum of costs objective function
(f1) for online MAPF, and refer to a solution as optimal if it
minimizes the sum of costs.
Observation 5. There is no complete online MAPF solver
that can guarantee to return a solution with a cost equal to
the offline optimal MAPF solver.

Proof. Consider an online MAPF problem with 2 agents,
situated in the grid given in Figure 2. S1 and G1 are the
start and goal of agent 1, which is the first agent to appear.
The agent has two shortest paths to reach its goal: going right
and then down, or going down and then right. After the agent
chooses one of these options, the second agent appears, ei-
ther in S2 or in S2’. An offline optimal solver will know
upfront where the second agent will appear and choose ap-
propriately if the first agent will go down and right (avoid-
ing S2) or right and down (avoiding S2’). An online MAPF
solver cannot know this in advance and is thus bound to yield
a suboptimal solution.



Online MAPF Algorithms
While Observation 5 states that guaranteeing an optimal so-
lution is not possible with a complete solver, there is still
a need to solve online MAPF problems in some principled
way. In this section, we propose several online MAPF algo-
rithms and discuss their properties.

The offline part of the problem, i.e., planning for the ini-
tial set of agents, can be done by a different algorithm than
the one used for the online part. We focus our discussion on
the online part and assume that all algorithms we propose
start with an optimal solution to the initial offline problem.
Hence, in what follows we only describe only the replan
function, which is called when new agents appears. The in-
put to such a replan functions is always the set of current
agents A, the set of new agents A+, and the ongoing plan
πA, which is the plan the agents in A are currently follow-
ing. Note that more than one new agent may appear at the
same time, and thus A+ may contain multiple agents.

Replan Single and Replan Single Grouped
The first two algorithms we describe serve as a baseline.
The Replan Single (RS) algorithm searches for an opti-
mal path for each new agent, one at a time, while avoid-
ing all other (already planned) agents. The Replan Single
Grouped (RSG) algorithm searches for optimal paths for all
new agents at once.

To formally describe RS and RSG, we introduce the fol-
lowing helping notation. Let ψπB

A be an optimal plan for a
group of agents A while avoiding some plan πB for a group
of agents B. This assumes that the groups A and B are dis-
joint. In particular, ψ∅

A means an optimal plan for the agents
in group A without considering any agent that is not in A.
Algorithms 1 and 2 list the pseudo codes for RS and RSG
using our helping notation ψA appropriately. Note that when
only one new agent appears, RS and RSG behave in the same
way.

Algorithm 1 Replan Single
function RS(agentsA, new agentsA+, ongoing plan πA)

for each a ∈ A+ do
π ← πA ∪ ψπA

a
A← A ∪ {a}

end for
end function

Algorithm 2 Replan Single Grouped
function RS(agentsA, new agentsA+, ongoing plan πA)

π ← πA ∪ ψπA

A+

A← A ∪A+

end function

Analysis. RS can be solved in polynomial time, since it runs one
single-agent path finding search. Therefore, in our implementation
of the rest of the algorithms described in this work, we first run RS
to obtain a baseline solution, and then try to improve on it in the
rest of the runtime.

RSG, on the other hand, may require more runtime, depending
on the number of new agents.

However, what can be said about the solution quality? Since both
RS and RSG do not allow changing the plans of the other agents,
then using them may lead to solutions of poor quality. Next, we
propose a solution quality criteria that online MAPF algorithms
can aim for in an effort to achieve better overall solution quality.

Snapshot Optimality
Definition 6 (Snapshot Optimal). A snapshot optimal plan in an
online MAPF setting is a plan for all agents to their goal that is
optimal in terms of sum of costs assuming no new agent will appear
in the future.

There is no guarantee that always returning a snapshot optimal
solution will result in an minimal sum of cost solution for the online
MAPF problem. In fact, we know from Observation 5 that such
minimality guarantee is not possible in online MAPF. Nonetheless,
demanding that an online MAPF algorithm will return snapshot
optimal solutions may bias it towards an overall low sum of cost in
practice. Indeed, we observe this in our experimental results. Thus,
we now propose several algorithms that provide such a guarantee.

Replan All The simplest way, conceptually, to return snapshot
optimal solutions is to plan optimally for all agents from their cur-
rent positions whenever new agent appears. We call this algorithm
Replan All (RA), and list its (simple) pseudocode in Alg. 3.

Algorithm 3 Replan All
function RA(agentsA, new agentsA+, ongoing plan πA)

A← A ∪A+

π ← ψ∅
A

end function

RA is the extreme opposite of RS: it solves a much harder
problem – offline MAPF for all current agents without con-
sidering the already computed ongoing plan (πA) – but is
expected to return a high quality solution, i.e., a plan with
a small sum of costs, since it computes the optimal solution
for all of the agents currently present and the new agents.

Online Independence Detection
RA plans optimally for all current agents from their current
positions, fully ignoring the plan the existing agents were
following. This can be wasteful in terms of runtime. More-
over, changing the route of an agent that is already moving,
which we refer to as re-routing the agent, may be undesir-
able, as it requires communication with that agent and mod-
ifying the agent’s plan may incur some overhead.

Next, we propose an algorithm that returns snapshot op-
timal solutions but also attempts to minimize the number
of re-routes. We call this algorithm Online Independence
Detection (OID) for online MAPF, since it is based on
Standley’s Independence Detection (ID) algorithm (Stand-
ley 2010). The main idea of Standley’s ID is to plan for each
agent separately while ignoring the other agents. If there is
a conflict between the generated plans then the conflicting
agents are merged into a group and replanned together. This
process continues iteratively until there are no conflicts any-
more.

The main idea of OID is very similar: allow the new
agents to plan while ignoring the other agents. If there is
a conflict with the plan of an already planned agent, then



we merge the groups of conflicting agents and plan for them
altogether (again disregarding the other agents). This is iter-
ated until there are no conflicts anymore.

This adaptation of ID to online MAPF, however, may re-
turn plans that are not snapshot optimal. The reason is that an
online MAPF algorithm is called multiple times, whenever
new agents appear. Consequently, when a new agent i1 con-
flicts with an already existing agent i2, it is not sufficient to
replan for i1 and i2 together since i2 may have been grouped
with other agent, e.g., i3 in the previous call. There, perhaps
agent i3 chose a longer path in the previous call to allow i2
use a shorter path. Now, when i2 is replanning due to a con-
flict with the new agent i1, perhaps it frees up locations that
i3 can use to have a shorter path for itself.

To correct this, we modify OID so that it keeps track of the
groups used to create the incumbent plan. Algorithm 4 lists
the pseudo code for OID. First, the algorithm requires that
the set of already planned agents A consists of mutually dis-
joint and collectively exhaustive sets of agents g1, g2, ..., gm,
and the ongoing plan πgi for every gi, such that πgi is the
lowest cost plan for the agents in gi. When new agents A+

appear, each of them is placed into a new group and an opti-
mal plan for each group is found, disregarding all the other
agents (lines 2–6). Then the algorithm iteratively resolves
the conflicts until there are no more conflicting groups. As-
sume there is a conflict of plans between groups gi and gj .
Then the algorithm tries to find such a plan for gi that avoids
conflicts with the agents from group gj while not deteriorat-
ing the plan in terms of the sum of costs (line 13). If it does
not succeed, it tries analogically to replan for gj while avoid-
ing gi (line 15). If it still did not succeed, it merges the con-
flicting sets of agents and replans for them together, while,
again, disregarding all other agents (lines 17–20). However,
this way the algorithm could get stuck in an infinite loop,
that is why it is necessary to first check whether the two
conflicting groups were already in conflict together before,
and thus merge and replan them straight away (lines 9–12).
Theorem 7. OID returns a snapshot optimal solution if it
is given a disjoint partition of agents to groups g1, . . . gm
such that for every group gi the cost of its current plan πgi
is equal to the cost of ψ∅

gi .
Proof outline. Consider the output of OID after being

called by a replan function. OID outputs a new partition
of agents to groups g′1, . . . g

′
m′ that includes the new agents

along with a plan to each of these groups. Since OID never
breaks a group, then every group in the original set of groups
g1, . . . gm must be equal to or a subset of one of the new
groups g′1, . . . g

′
m′ . Since OID returns an optimal plan for

each of the new groups, then it cannot miss an optimal plan
for any agent.
Corollary 8. If the ongoing plan was snapshot optimal and
OID is used to replan when new agents appear then OID is
guaranteed to always return snapshot optimal solutions.

Corollary 8 follows by induction due to Theorem 7 and
the fact the initial plan is snapshot optimal. Since OID at-
tempts to minimize the number of existing agents it replans
for, it has the potential to save runtime and require fewer
re-routes than RA.

Algorithm 4 Online Independence Detection

1: function OID(agents A =
⋃̇m

i=1 gi, new agents A+,
ongoing plan πA)

Require: πgi for each group gi
2: k ← m+ 1
3: for each a ∈ A+ do
4: gk ← a
5: πgk ← ψ∅

a
6: k ← k + 1
7: end for
8: while gi and gj conflict do
9: if gi, gj conflicted before then

10: gi ← gi ∪ gj
11: gj ← ∅
12: πgi ← ψ∅

gi

13: else if ψ
πgj
gi is as good as πgi then

14: πgi ← ψ
πgj
gi

15: else if ψπgi
gj is as good as πgj then

16: πgj ← ψ
πgi
gj

17: else
18: gi ← gi ∪ gj
19: gj ← ∅
20: πgi ← ψ∅

gi
21: end if
22: end while
23: end function

However, OID has one clear disadvantage compared to
RA. If during an online MAPF execution RA is not used
to replan for some agents, e.g., due to runtime limitations,
RA may still return snapshot optimal solutions if it is used
later to replan. By contrast, OID depends on previous calls
to replan to return a snapshot optimal solution, as well as
a partition of groups and a plan for each group such that
each group is solved optimally. If OID does not accept this
as input, then it cannot guarantee snapshot optimality. For
example, if in one call to replan RS is used instead of OID,
the OID loses its snapshot optimality property.

Suboptimal Independence Detection
As noted earlier, returning a snapshot optimal plan does not
guarantee an optimal solution to the online MAPF problem.
Therefore, we propose to change OID by allowing it to re-
turn plans whose sum of costs is at most D times more than
the optimal sum of costs but allowing it to further reduce the
number of agents that have to deviate from the ongoing plan.
We call this algorithm Suboptimal OID (SubID).

In details, when OID replans for the group of agents gi
while avoiding gj and ignoring all other agents (line 13 and
symmetrically line 15), it only accepts plans that have ex-
actly the same sum of costs as that of the optimal plan for gi
while ignoring all other agents (the sum of costs value be-
ing f1(ψ

πgj
gi )). It is likely that such a solution does not exist.

SubID allows the new plans to have higher cost, namely any
cost in the range [f1(ψ

πgj
gi ), D · f1(ψ

πgj
gi )]. This is expected



Figure 3:
Small grids.

Figure 4:
Large grids.

to increase the likelihood that such a plan will be found.

Theorem 9. Given a disjoint partition of agents to groups
g1, . . . gm such that for every group gi the cost of its current
plan πgi is at most w1 times the cost of ψ∅

gi , then SubID with
parameter D = w2 will return a solution whose cost is at
most w1 · w2.

Proof outline The proof is similar to that of Theorem 7:
every group gi is a contained in exactly one group from the
solution of SubID. The added suboptimality is a factor of at
most w2 and the suboptimality of the existing plan is at most
w1 thus the overall suboptimality is w1 · w2.

A direct corollary of Theorem 9 is that if SubID is always
used to replan when new agents appear then after the m re-
plan calls SubID will output a plan whose cost is at most
Dm times the cost of a snapshot optimal plan.

Results of Experiments
We implemented all the algorithms and evaluated their
performance on a set of randomly generated problems.
All experiments were conducted on Dell PC with an
Intel R© CoreTM i7-2600K processor running at 3.40 GHz
with 8 GB of RAM.

Instances
We created two datasets of online MAPF problems based on
4-connected grids designed to simulate intersections for au-
tonomous vehicles. The first dataset is on small and dense
grids, chosen from the 4 types of small grids depicted in
Figure 3. Each problem started with no agents present at
the outset. Then we are adding new agents, the total num-
ber of which is in the range {10, 12, 15, 17, 20, 22, 25}. The
starting time of each agent is set uniformly at random from
the interval [1, 30], so a number of agents may appear at the
same time. The start location is a random location from a
randomly picked margin of the map and the goal is randomly
picked from the opposite margin. We generated 5 problems
for each configuration. Altogether this dataset contained 140
problems.

The second dataset is on a larger grid depicted in Figure
4. The starting time of each agent is set uniformly at ran-
dom from the interval [1, 100]. The number of new agents
to appear over these timesteps increments from 60 to 70.
The agents are moving from a randomly picked margin to
another randomly picked margin. No agent is present at the
outset. We generated 5 problems for each configuration. Al-
together we generated 30 testing instances.

Implementation Details
All the proposed algorithms require an optimal offline
MAPF solver, adapted to our assumptions that a new agent
appears in its garage and agents disappear at their goals. We
created two such modified optimal offline MAPF solvers:
one based on a reduction to Boolean satisfiability (SAT) via
the Picat language and compiler (version 2.2#3) (Barták et
al. 2017), and the other based on the Conflict-Based Search
(CBS) algorithm (Sharon et al. 2015). For the first dataset
(small grids) we used the Picat-based solver and for the sec-
ond dataset (large grid) we used the CBS-based solver. This
is because Picat-based solvers perform better on small and
dense grids and CBS-based solver performs better on large
grids (Barták et al. 2017).

Dataset #1: Small Grids
We ran the following algorithms on the small grids dataset:
Replan Single (RS), Replan Single Grouped (RSG), Replan
All (RA), Online Independence Detection (OID), and Sub-
optimal ID (SubID) with D chosen to be 1.1. For every in-
stance, we always run first RS and then the algorithm in
question. Whenever the runtime for a newly appeared agent
exceeds the given time limit, which was set to 30 seconds,
the output from RS is taken into results. The reason is that
RS is done extremely quickly and it is always good to have
some solution rather than no solution. The number of in-
stances, where the timelimit was reached and thus the result
from RS was taken, can be seen in Table 2.

#agents RSG SubID OID RA
10 0.00 1.70 1.70 0.55
12 0.00 2.55 2.20 1.05
15 0.05 5.90 4.25 2.40
17 0.35 6.55 7.10 3.40
20 1.20 9.55 9.80 5.65
22 1.70 10.85 10.55 9.40
25 3.50 11.65 11.65 10.00

Table 2: The average number of timeouts per instance of
each algorithm.

How the algorithms behave with respect to the number of
times an agent had to change its plan (referred to hereafter
as the number of changes) is shown in Table 3. The number
of changes for RS and RSG is always zero, since it never
replans for the other agents, so we do not report it in Table 3.
The results clearly show that OID requires fewer changes
than RA, and SubID requires even fewer changes than OID.
For example, with 15 agents, SubID required on average 1.5
changes, while OID required 3.45 and RA 6.45. The slight
decrease in the number of changes for 20 agents is caused by
the increase in the number of timeouts and therefore more
RS calculations that avoid changes is used.

The relative gain in terms of the sum of costs over RS is
shown in Table 4. The expectations that RA will always be
the best w.r.t. the sum of costs have been confirmed. It is
worth noticing that SubID, which does not return an optimal
solution in every replan, brings more or less the same gains
in terms of the sum of costs as OID. Thus, SubID shows



promising results, with comparable sum of costs to OID but
significantly fewer changes.

#agents SubID OID RA
10 2.65 3.30 5.15
12 2.05 2.80 3.80
15 1.50 3.45 6.45
17 3.80 3.85 10.05
20 2.85 2.65 10.15
22 2.95 4.25 6.80
25 1.90 2.55 6.40

Table 3: Avg. # of re-routes for smaller grids using Picat.

#agents RSG SubID OID RA
10 1.01 1.06 1.06 1.10
12 1.02 1.08 1.09 1.14
15 1.03 1.04 1.11 1.17
17 1.05 1.14 1.13 1.22
20 1.04 1.04 1.04 1.19
22 1.06 1.06 1.10 1.15
25 1.05 1.07 1.08 1.15

Table 4: Avg. gain in SOC over RS for smaller grids using
Picat.

Dataset #2: Large Grids

#agents RSG SubID OID RA
60 0.0 1.0 0.4 0.8
62 0.0 0.0 0.2 0.6
64 0.0 1.0 0.8 0.4
66 0.0 0.0 0.2 0.6
68 0.0 0.0 0.0 0.4
70 0.0 0.6 1.0 0.4

Table 5: Avg. # of timeouts on the larger grid using CBS.

The experiments on large grids dataset were carried out
in the same way. The number of instances where time limit
was reached is shown in Table 5. The number of changes
is shown in Table 6, and the relative gain w.r.t. the sum of
costs is shown in Table 7. Briefly speaking, the results are in
concordance with those of small grids.

While here again we see a clear advantage in terms of the
sum of costs for RA, OID, and SubID compared to RS, the
differences are significantly smaller. This is because larger
grids are sparser, and thus it is easier for RS to find a higher
quality solution. The differences in the sum of costs between
RA, OID, and SubID are negligible, but SubID still shows a
significant advantage in terms of the number of changes. For
example, with 66 agents SubID required on average only 5
changes while RA required 32, and their sum of costs was
virtually the same.

In conclusion, SubID confirms to have brought the best
trade-off between the quality of the resulting plans and the
computational efficiency.

#agents SubID OID RA
60 5.6 13.4 30.0
62 4.6 11.4 26.0
64 4.4 11.6 25.0
66 5.0 16.6 32.0
68 6.4 12.4 27.4
70 5.8 12.0 24.6

Table 6: Avg. number of re-routes for larger grid using CBS.

Related Work
The term online planning in general refers to planning that
is done while executing a plan, in contrast to offline plan-
ning where all the planning is done upfront. Many papers on
online planning defer planning to execution to minimize the
computational effort of creating a complete plan for every
contingency offline. This includes the seminal work of Korf
on Real-Time A* and its many successors (Korf 1990). This
is different from our setting, where some of the planning is
done online because the agents do not know in advance how
many and where the new agents will appear.

Online MAPF can be viewed as an instance of ad-hoc
teamwork (Stone et al. 2010), which exactly addresses cases
where the agents constantly need to coordinate with new
agents. However, the form of interactions between the agents
in online MAPF is very specific – they cannot collide with
each other, while ad-hoc teamwork usually involves deeper
forms of collaboration. In the motion planning literature,
there is work on single robot online planning that replans
for newly observed obstacles by using pre-defined planning
patterns (Majumdar and Tedrake 2013). In addition, some
prior work on multi-robot motion planning that are funda-
mentally forms of prioritized planning (Van Den Berg and
Overmars 2005) can be adapted to the online case, resulting
in a behavior similar to RS. Other motion planning tech-
niques (Dobson et al. 2017; Godoy et al. 2015) are designed
for offline, continuous spaces and adapting them to a discrete
and online MAPF is non-trivial.

Conclusion and Future Work
In this paper, we study the online version of the multi-agent
pathfinding problem, in which new agents appear during ex-
ecution of a plan. We analyzed several variants of the prob-
lem theoretically, showing which of these variants can be
solved by an online MAPF algorithm. Then, we proposed
several online MAPF algorithms. The pros and cons of each
algorithm are analyzed and demonstrated experimentally.

#agents RSG SubID OID RA
60 0.997 1.008 1.015 1.015
62 0.994 1.008 1.012 1.012
64 1.000 1.009 1.012 1.013
66 1.000 1.008 1.009 1.009
68 0.996 1.007 1.009 1.009
70 0.998 1.009 1.010 1.011

Table 7: Avg. gain in SOC over RS on larger grid using CBS.



While the baseline replan single algorithm is the fastest, its
solution quality is, in some configurations, poor compared
to the replan all baseline. OID and SubID provide further
improvements to replan all, as they minimize the sum of
costs while also aiming to force fewer agents to change their
planned paths. Future work we expand on this is modifying
the replanning process to try to find individual plans that are
close to the ongoing plan (Felner et al. 2007) and/or plans
that minimize the probability of conflicts in the future.
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