Multi-agent Pathfinding on Large Maps Using Graph Pruning:
This Way or That Way?

Jiii Svancara,' Philipp Obermeier,>*> Matej Husér,' Roman Bartik,' Torsten Schaub??

! Charles University, Prague, Czech Republic
2 University of Potsdam, Potsdam, Germany
3 Potassco Solutions, Potsdam, Germany
svancara@ktiml.mff.cuni.cz, phil @cs.uni-potsdam.de, husarmatej @ gmail.com, bartak @ktiml.mff.cuni.cz,
torsten @cs.uni-potsdam.de

Abstract

Multi-agent pathfinding is the task of navigating a set of
agents in a shared environment from their start locations to
their desired goal locations without collisions. Solving this
problem optimally is a hard task and various algorithms have
been devised. The algorithms can be in general split into two
categories — search-based and reduction-based. It is known
that reduction-based algorithms struggle with large instances
in terms of the size of the map (shared environment). A recent
study tried to mitigate this drawback by pruning some ver-
tices of the map. The pruning is done based on the vicinity to
a shortest path of an agent. In this paper, we study the effect of
choosing such shortest paths. We provide several approaches
to choosing the paths and we perform an experimental study
to see the effect on the runtime.

Introduction

In this paper, we study the problem of Multi-agent pathfind-
ing (MAPF). The task is to navigate a set of agents in a
shared environment (map) from starting locations to the de-
sired goal locations such that there are no collisions (Sil-
ver 2005). This problem has numerous practical applications
in robotics, logistics, digital entertainment, automatic ware-
housing and more, and it has attracted significant research
focus from various research communities in recent years (Li
et al. 2021, 2020; Surynek 2019; Nguyen et al. 2017; Gebser
et al. 2018b; Gomez, Hernandez, and Baier 2021).

The optimal MAPF solvers can be in general split into
two categories — search-based and reduction-based. The for-
mer algorithms search over possible locations or conflicts
among the agents, the latter reduce the problem to some
other well-defined formalism such as Answer Set Program-
ming (ASP) (Gebser et al. 2018a). While it is not always
the case, it is generally established that each of the ap-
proaches dominates on different types of instances (Gémez,
Hernandez, and Baier 2021; Svancara and Bartak 2019).
The search-based solvers are easily able to find solutions
on large sparsely populated maps while having trouble deal-
ing with small densely populated maps. On the other hand,
the reduction-based solvers are able to deal with the small
densely populated maps but are unable to find a solution for
large maps even with a small number of agents.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Contributions

Since the reduction-based solvers have trouble with solving
instances on large maps, a recent study (Husér et al. 2022)
proposed techniques to prune the map of vertices that are
most likely not needed to solve the instance. The pruning
is done based on a randomly chosen shortest path for each
agent. Only the vertices around the selected path are consid-
ered and the other vertices are removed from the instance,
creating a much simpler problem. In this paper, we extend
the original study by examining the behavior of the tech-
nique by using more than just one shortest path for each
agent. The four strategies of pruning the graph (map) are
from the original study, while the four approaches to select
the paths for each agent are a novel contribution of this pa-
per.

Structure of the paper

The paper is structured as follows. First, we establish formal
definitions used in MAPF, then we introduce the ASP en-
coding we used as our reduction-based MAPF solver. In sec-
tion , we describe the sub-graph method from (Husér et al.
2022). In section , we describe our contribution of choosing
the shortest paths for each agent. Lastly, we perform experi-
mental evaluation of all of the different approaches.

Definitions

MAPF instance M is a pair M = (G, A), where G is a
graph G = (V, E) and A is a set of agents. Each agent a; €
A is defined as a pair a; = (s;,9;), where s; € V is a
starting location of agent a; and g; € V is a goal location of
agent a;.

Our task is to find a valid plan m; for each agent a; € A
such that it is a valid path from s; to g;. We use m;(t) = v to
denote that agent a; is located in vertex v at timestep ¢. Time
is discrete and at each timestep ¢, an agent can either wait in
its current location or move to a neighboring location.

Furthermore, we require that each pair of plans 7; and 7;,
i # j is collision-free. Based on MAPF terminology (Stern
et al. 2019), there are five types of collisions (see Figure 1).
In this work, we forbid edge, vertex, and swapping conflict
while allowing following and cycle conflicts since during the
last two conflicts, the agents are not occupying the same
physical location. We call this setting parallel motion, as

opposed to pebble motion (Kornhauser, Miller, and Spirakis
1984), where all of the conflicts are forbidden.

:) m; \
‘ ‘4’ @ @ ‘_
(d) (e)

Figure 1: Conflicts between two or more agents. (a) edge
conflict, (b) vertex conflict, (c) following conflict, (d) cycle
conflict, (e) swapping conflict. Figure taken from (Stern et al.
2019).

In this paper, we are interested in finding a makespan op-
timal solution to MAPF problems. Makespan (or sometimes
horizon) is the first timestep ¢ at which all of the agents
are located at their goal vertices. Once an agent arrives at
its goal location it does not disappear. It may move out of
the goal location again, however, the plan ends once all of
the agents are at the goal location at the same time. This
means that the length of the plan |7;| is the same for all of
the agents. Another cost function often used in literature is
sum of costs (Sharon et al. 2011). Note that finding an opti-
mal solution for either of the cost functions is an NP-Hard
problem (Ratner and Warmuth 1990; Yu and LaValle 2013).

ASP Encoding

To describe both movement actions and positional changes
of agents, we use the ASP encoding' of an action the-
ory for MAPF in Listing 1, introduced by (Gebser et al.
2018a, 2020). The encoding assumes that graph G is a grid
and plans agents (here called robots) in parallel within a
makespan while avoiding conflicts. Specifically, the plan’s
timesteps are bound by the horizon (or makespan) in Line
1. Line 3 gives the four cardinal directions, used in Line 4 to
represent all transitions on the grid with its x,y-coordinates
stated by predicate position/1. Possible movement ac-
tions, at most one per agent and timestep, are generated by
Line 8. Related preconditions and positional changes are
described in Lines 10-12: position (R, C, T) states that
agent R is at Xx,y-coordinates C at time T. For an agent R
sitting idle at time T, the frame axiom in Lines 14-15 prop-
agates its unchanged position. Swapping conflicts are pre-
vented by Lines 17-19, and both edge and vertex conflicts
by Line 21.

1 time (1..horizon) .

3 direction((X,Y)) :— X=-1..1, Y=-1..1, [|X+Y|=1.

4 nextto((X,Y), (DX,DY), (X',Y")) :-

5 direction((DX,DY)), position((X,Y)), position ((X’
P Y))

6 (X,Y)=(X'-DX, Y’ -DY), (X’,Y’)=(X+DX,Y+DY).

8 { move(R,D,T) : direction(D) } 1 :- isRobot (R), time (

T) .

"https://github.com/potassco/asprilo-
encodings/blob/master/m/action-M.1lp

10 position(R,C,T) :—

11 move (R,D,T), position(R,C’,T-1), nextto (C’
,D,C).
12 :— move (R,D,T), position(R,C ,T-1), mnot nextto(C
/Dy
14 position(R,C,T) :-—
15 position(R,C,T-1), not move(R,_,T), isRobot (R),
time (T) .
17 moveto(c’,C,T) :-
18 nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).
19 :—- moveto(C’,C,T), moveto(C,C’,T), C < C’'.
21 :— { position(R,C,T) : isRobot(R) } > 1, position(C
), time(T).

Listing 1: Action theory for agent movements.

Further, we augment the action theory encoding with the
goal condition in Listing 2 to enforce that every agent R has
reached its goal coordinates C, stated by goal (R, C), at
the time horizon.

1 :— not position(R,C,horizon), goal(R,C).

Listing 2: Goal condition for agents and assigned nodes.

Overall, our ASP encoding consists of the action theory
(Listing 1) in conjunction with the goal condition (Listing 2)
and expects an MAPF instance in form of the aforemen-
tioned ASP facts as input.

There are two commonly used techniques to speed up the
computation. First, using a lower bound for the makespan
instead of starting with H = 1. A simple lower bound is
to compute for each agent a; the shortest path from agent’s
start location s; to agent’s goal location g;. The lower bound
for H is then the longest of these shortest paths.

Another enhancement is to preprocess the variables rep-
resenting the agent’s location. These variables correspond
to an agent being present at some location at a time. How-
ever, for some locations, we can determine, that the spe-
cific agent cannot be present at the specific time, because we
know where the agent needs to be present at times 0 and H.
Specifically, for agent a;, if vertex v is distance d away from
start location s;, we know that the agent a; cannot be present
in vertex v at times {0, ..., (d — 1) } because it cannot travel
the distance in time. Similarly, if vertex v is distance d away
from goal location g;, agent a; cannot be present in vertex v
attimes {H —d+1,..., H}. We add the integrity constraint
in Listing 3 to ensure that agent R occupies an eligible posi-
tion C at time T, expressed by a fact poss_loc (R, C, T).
1 :— not poss_loc(R,C,T), position(R,C,T), isRobot (R),

2 poss_loc(_,_,_) .

Listing 3: Eligible agent locations from pre-processing.

The Sub-Graph Method
Motivation

Both of the improvements mentioned in the last section
maintain completeness and optimality. However, there are
situations, where too many possibilities for the agent’s lo-
cation remain, which may overwhelm the underlying solver.

As a motivation example, see Figure 2a. The agent is placed
on a 4-connected grid map going from one corner to the di-
agonally opposite corner. With just one agent and no obsta-
cles, there are (2%\]:11)) possible shortest paths if the size of
the grid is IV x N. As seen in the figure, the preprocessing
correctly finds at what timesteps the agent can be located at
which vertices, noted by the number in the corner of each
vertex. However, the number of choices for the solver is still
too large. We propose to pick just one of the shortest paths
and treat the other vertices as an impassable obstacle. Hence,
for these vertices, there are no variables entering the solver.
Such pruning of the graph can be seen in Figure 2b.

(b)

Figure 2: An agent moving on a grid map from a corner to
the opposite one. The numbers represent at what timesteps
the agent can reach the given vertex.

Another example where this approach is helpful can be
seen in Figure 3a. The two agents have different lengths of
shortest paths. For the orange agent with the longer path,
preprocessing correctly finds the only shortest path. How-
ever, the blue agent with a much shorter path may move
anywhere in the shaded area since it has enough time. Re-
call that we are computing makespan optimal solutions, so
we are interested in the timestep when all agents are at their
goal locations. This time is prolonged by the orange agent,
therefore the blue agent has many more choices. If we use
our pruning technique the number of choices reduces dra-
matically. The blue agent can still choose when to move to
the goal location, or even move back and forth a few times,
however, it may use significantly fewer vertices.

_
L
/

7

(a) ()

Figure 3: An instance with two agents, one with longer path
allowing the other to move more freely.

Of course, this pruning does not maintain completeness in
general. A simple counterexample can be seen in Figure 4.

The two agents want to swap their location (ie. their goal
location is identical with the starting location of the other
agent). To do this, the only solution is for both of them to
travel to the right and use the top vertex to switch their po-
sition. If we were to use our pruning technique, this would
not be possible, making the example unsolvable. To mitigate
these instances, we propose several strategies how to change
which vertices are pruned.

@O

Figure 4: An instance with two agents that want to swap their
positions.

Solving Strategies

We will use the following notations. Let S P; be the vertices
on a chosen shortest path for agent a; € A (ie. a single
shortest path from s; to g;). The length of the path is |SP;|.
The union of vertices on the shortest paths of all agents is
SPy = U,,ca SPi- Note that for each agent we consider
just one shortest path. If multiple shortest paths exist for an
agent, one is chosen at random. Given this notation the lower
bound on makespan of an instance M = (G, A) can be writ-
ten as LB,s(G, A) = maxg,c 4 |SPF;|. For short, we refer
to such lower bound just by LB.

k=2| k=1| k=1[k=2

Figure 5: An instance with a single agent. Each vertex is
labeled into which k-restricted graph it belongs.

Py

A k-restricted graph Gresf is a subgraph of GG con-
taining only vertices in S P4 and vertices that are at most
distance k away from some vertex in S Py, ie. GresfPA =
{v € V|3Ju € SPy4, dist(u,v) < k}. Since we al-
ways fix SP4, we write for simplicity only Gresi. Note
that Gres,, C Gresy for k < k’. An example of such k-
restricted graph can be seen in Figure 5. For a O-restricted
graph, only the shortest path is part of the graph. A 3-
restricted graph is the whole initial graph in case of the ex-
ample in Figure 5.

Since finding the makespan optimal solution is done by
iteratively increasing the makespan, we define a makespan-
restricted MAPF instance M = (G, A, H). This is the
same problem as finding the solution for M = (G, A) in
makespan H.

The (k,m)-relaxation of M is the makespan-restricted
MAPF instance

Mp.m = (Gresg, A, LB +m)

This relaxation means that instead of the whole graph G
we consider only Gres, and we are finding a solution
with extra makespan m — extra over the lower bound on
makespan. Also note that Gres;, is constructed such that
LBis(G,A) = LBpis(Gresg, A) for any k, therefore,
we do not need to change the notation of LB.

We can build a partial order <., over the (k,m)-
relaxations My, ,,, such that

Mkm’L <relax Mk’ﬁn’

ifk<k/,m<m'andk+m <k’ +m/

There is an upper bound on & such that for some k4, we
have Gresy,,,. = G. There is also a theoretical upper bound
on makespan for a given MAPF instance of O(V?) (Korn-
hauser, Miller, and Spirakis 1984), however, in this paper
we work only with solvable instances (this can be checked
by polynomial-time algorithm) and we do not need to know
the exact upper bound on makespan. Just for the next exam-
ple assume that k., = 3 and m,;,4, = 2. Then, Figure 6
depicts the space of possible relaxations induced by <.cj4-
Note that the partial ordering forms a lattice.

Moo

/\

MJO

/\/\

M0 My,

/\/\/

Ms M, ; M,

NSNS

M; 4 M; ,

NS

M ,

Figure 6: MAPF instance relaxations for k., =
3, Mmaz = 2.

The generic algorithm to solve MAPF using the relaxed
instances can be seen in Algorithm 1. First, we build an ini-
tial (k,m)-relaxation and we iteratively change k and m until
the instance is solvable. This corresponds to a traversal of the
lattice formed by the partial ordering <,.¢;,,. Note that the
shortest path for each agent is fixed for all of the iterations.
Next we identify four reasonable traversals.

Baseline Strategy The classical approach to solving
MAPF makespan optimally can be expressed in the relaxed
instances as follows. We start with an initial candidate of
Kmaz (ie. the whole graph G) and m = 0. If the relaxed
instance is unsolvable, only the additional makespan is in-
creased as m = m + 1. In terms of the Figure 6, the first

Algorithm 1: Generic algorithm solving MAPF using relax-
ation.

function GENERIC MAPF RELAXATION(M =
LB =max,,ca |SP;|
(k, m) < Initial_Candidate()
while not solve_ MAPF(My, ,,,) do
(k,m) + Relax()
end while
return LB +m
end function

(G, 4))

solved relaxation is M3 ¢ and then we are moving only to
the right-hand side. We shall refer to this strategy as baseline
or B for short.

Proposition 1. If a MAPF instance M has a solution, base-
line strategy finds an optimal solution.

Proof. Since M has a solution, there needs to be an opti-
mal solution with some makespan H such that LB < H.
The baseline strategy will try all of the possible makespans
LB,...,H, with H being the first solvable. [

Makespan-add Strategy The first smarter solution is to
keep only the vertices on the shortest paths and the imme-
diately adjacent ones. The initial candidate is ¥ = 1 and
m = 0. Otherwise, the strategy is the same as the baseline
strategy — if the relaxed instance is unsolvable, we increase
m = m + 1 while the k is never changed. We refer to this
strategy as makespan-add or M for short.

Proposition 2. Makespan-add strategy is both suboptimal
and incomplete.

Proof. For a simple example where makespan-add cannot
find a solution recall Figure 4. No matter how the initial con-
stant of £ is set, we can create a graph where the extra vertex
needed for the two agents to swap is not part of Gresy.

For an example where makespan-add finds a suboptimal
solution see figure 8 with blue agent choosing the blue path.
In this case makespan-add needs to increase m two times to
find a solution, while it would be possible to find a solution
in LB steps if the vertices of the black path were included.

O

On the other hand, in most cases, this simple strategy can
find a solution, and due to the great reduction of vertices of
the graph, the solution may be found quickly. We choose to
start with k¥ = 1 rather than k¥ = 0 to increase the probability
for a solution to exist while keeping the number of vertices
to a minimum.

In terms of Figure 6, the strategy first moves to the left
once and then only to the right.

Prune-and-cut Strategy The previous strategies either
use unnecessary large restricted graph or do not guarantee to
find a solution. Strategy prune-and-cut (P for short) guaran-
tees both completeness and optimality. We start with initial
candidate £k = 0 and m = 0. In case the relaxed instance is
unsolvable, we cannot be sure if the reason is the restriction
on k or on m. However, since we do not want to overestimate

m, we first need to increase k potentially up to k... Once a
restricted instance My, . ., is unsolvable, we are sure that
m needs to be increased. Since we proved that we require at
least m + 1 extra makespan, we can optimistically assume
that the whole Gresy, is not needed and we restrict the

max

graph back to £ = 0 producing Mg y;,41-

Proposition 3. If a MAPF instance M has a solution,
prune-and-cut strategy finds an optimal solution.

Proof. Before m is increased, we always check if there is
a solution using the original GG. The rest of the proof is the
same as for Proposition 1. O

During our initial experiments, it turned out that the whole
Gresy,, . 1s usually not necessary. Therefore, increasing k
by 1 each time may prove inefficient, since most of the calls
are unsolvable and we just need to prove that we can increase
m. For this reason we increase k by powers of 2 (ie. k =
k+1,k=k+2,k=k+4,...).

Another implementation improvement is to not increase
up to k4, but rather to some k < k4, that produces
Gresy, that includes all of the vertices reachable in given
LB + m by some agent. This information can be obtained
by the preprocessing.

The visualization of solver calls of the prune-and-cut
strategy over the lattice can be seen in Figure 7.

Figure 7: The traversal of the lattice by strategy prune-and-
cut. The highlighted relaxed instances are being solved.

Combined Strategy The drawback of the prune-and-cut
strategy is that in the case the makespan needs to be in-
creased, we first increase k up to k.. before increasing
m. To mitigate this problem, we present the combined strat-
egy (C for short). The initial candidate is again £k = 0 and
m = 0. If the relaxed instance is unsolvable, we increase
both £ = k 4+ 1 and m = m + 1 at the same time. This way,
we save the number of calls to the solver because we do not
need to explore all of the possible reductions in the % direc-
tion. On the other hand, this strategy is no longer optimal.

Proposition 4. If a MAPF instance M has a solution, com-
bined strategy is guaranteed to find a solution (complete-
ness) but not necessarily an optimal one.

Proof. If it is necessary to use all of the vertices in the graph
G to find a solution, combined strategy will eventually in-
crease k up to kg, since k,q, is a finite number. However,
in doing so, it may overestimate the m needed. Figure 8 with
blue agent choosing the blue path is again such an exam-
ple. O

Figure 8: An example instance where the blue agent has two
choices of the shortest path. If the blue path is chosen, the
proposed strategies perform worse.

Choosing the Shortest Paths

The described strategies (except for baseline) may suffer
from a poor choice of the initial shortest path for each agent.
See the example in Figure 8. The blue agent has two possi-
ble shortest paths. If the algorithm by random chooses the
blue path, none of the sophisticated strategies can solve the
relaxed instance in the first solver call. Makespan-add would
find a suboptimal solution with makespan LB + 2, prune-
and-cut would require to increase k two times to be able to
use the black path, and combined strategy would also find a
suboptimal solution with makespan LB + 2.

This issue can be mitigated by including all of the vertices
on all of the possible shortest paths into the Gresy, how-
ever, this goes against the logic of the motivational example
in Figure 2, therefore we will try to identify approaches to
choose more than just one of the shortest paths to help the
strategies.

Since the choice of the shortest paths acts as a prepro-
cessing stage, we aim for fast heuristic techniques. For this
reason, each agent is treated individually, without consider-
ing the interference with shortest paths of the other agents.
We propose the following four sensible approaches to pick
which vertices should be included in the initial restricted
graph Gresg. All of the described strategies, then, work the
same as was described in the previous section.

Single Path First, we use the same approach as in the orig-
inal study (Husdr et al. 2022). For each agent we choose a
single random shortest path. The restricted graph Gresy is
induced by SP4 = Uaie 4 SP;. Recall that S P; are the ver-
tices on the shortest path for agent . We will refer to this
approach as single-path or SP for short.

1 » &
(a) The greedy approach starting at s; chooses an undesirable
green path due to the fact that it tries to make the path most divers
(to the previously planned blue and red paths) from the start with-
out the knowledge of the rest of the map. After passing the obsta-

cle, the approach is forced to choose the same vertices as are on
the blue path.

1 — 8

(b) By choosing a different starting location, the greedy algorithm
finds a better green path than in Figure 9a. In this example there
are multiple possible starting locations, each equally good. If this
happens, one is chosen at random.

Figure 9: An example that shows the drawback of finding the shortest path greedily from the the starting location s;. This issue
can be fixed by choosing different starting vertex. The green path is chosen after red and blue paths.

All Paths The second approach is on the other end of the
spectrum. Instead of just one shortest path, we will consider
all vertices on all of the possible shortest paths of a given
agent. Formally, we write SPA! = {v € V | dist(s;,v) +
dist(v,g;) = |SP;|} meaning all vertices whose distance
from start location plus the distance to goal location equals
the distance of a shortest path. The restricted graph Gresg
is induced by SPA" =, c 4 SPAM.

Note that while there may be many different shortest paths
as discussed in Figure 2, the number of vertices on those
paths is much smaller. For the creation of the restricted
graph, we are interested only in the vertices, the specific path
will be decided by the underlying solver. Finding all of the
vertices on all of the shortest paths can be done by perform-
ing a breath-first search from the start and goal of the agent
and checking for the condition in our definition of SP/A!.
We will refer to this approach as all-paths or AP for short.

Random Paths Instead of considering one or all possible
paths, we aim to pick vertices that are part of just some sub-
set of all paths. First, we need to set a number of paths to
consider. Note that based on the given map and the start
and goal locations of each agent, there is a wide variety of
the number of shortest paths. Instead of selecting a magic

lsPAY|

constant, we propose to find ISP shortest paths for agent

a; and consider the union of vertices on those. If there is a
unique shortest path, by using the formula we correctly con-
sider just the one shortest path, while on an empty N x N
grid (such as in Figure 2), we are considering % paths.

The next proposed approach picks the specified number
of shortest paths randomly. We do this by a random walk
starting at s; moving only over vertices from SP/ in the
correct direction. We know the correct direction based on
the distance from s; and g; computed by BFS (we need to
perform the two BFS in order to determine SP/!!). The
random walk is biased to prefer vertices that are not yet
used for a given agent. By doing this for all agents we get
Spland — | _, SPFed We will refer to this approach

a; €A

as random-paths or RP for short.

Distant Paths The drawback of random-paths it that there
is no guarantee on the properties of the chosen shortest
paths. The idea of using more than one shortest path is to
allow the underlying solver to navigate the agent through a
different region of the map to avoid possible conflicts. How-
ever, by choosing random paths, we may produce paths that
share many vertices or are in close proximity to each other,
both of which are undesirable.

We want to find diverse and distant paths. There
is a polynomial-time algorithm to find diverse shortest
paths (Hanaka et al. 2021). In this case, diverse means paths
that share the least amount of edges (or vertices). By using
this algorithm, it may be the case that we find paths as shown
in Figure 10. On the other hand, there is also a research deal-
ing with finding the most diverse near-shortest paths (Hacker
et al. 2021), in which case the paths are supposed to be the
greatest distance from each other. Note that both studies use
the term distant with different meaning. In our paper we will
be using diverse for different paths and distant for path with
distance between them. The downside of the the second re-
ferred study is that the paths found are not optimal and also
the problem itself is NP-Hard, which is not a desirable trait
for a preprocessing function.

|
N
? 8

Figure 10: Possible shortest paths from s; to g; found by us-
ing the diverse shortest paths algorithm (Hanaka et al. 2021).

Our proposed approach will be heuristic. Again, we build
the paths over the vertices from SP/A!, gradually creating
SPPist At each step, we try to add a new vertex to the
currently build path and if there are multiple choices, we
pick one that maximizes the minimal distance to all of the

vertices currently in SPP%? (see Figure 11 for an example).

N
N O.
[Ol

Figure 11: The gradual building of SPP! from s; to g;
by a greedy approach. The currently build green path has a
choice. Moving downward will be chosen since it maximizes
the distance to the already chosen paths.

Since this is just a heuristic, there are examples that make
us choose an undesirable path because the approach greedily
chose the next vertex on the path without knowledge of the
rest of the map. Such example can be seen in Figure 9a.
To mitigate this, we start to build the path from a different
vertex from the set SPA! rather than from s;. The first path
is build the same as SP;, for the latter paths, we choose a
vertex v such that it maximizes the minimal distance to all
of the vertices currently in SPP%*. This way we need to
build the path both from v to s; and from v to g;. Using
this approach we find a much more desirable path for the
example in Figure 9a with the result shown in Figure 9b. We
will refer to this approach as distant-paths or DP for short.

Experimental Evaluation

To test and compare the proposed strategies in combination
with approaches to creating the restricted graph, we set up
empirical experiments. The full implementation and results
are available at https://github.com/potassco/
mapf-subgraph-system.

For the ASP-based solver, we used the grounding-and-
solving system clingo (Gebser et al. 2019; Kaminski et al.
2020) version 5.5.2.

We ran the experiments on an Intel Xeon E5-2650v4 un-
der Debian GNU/Linux 9, with each instance limited to 300s
processing time and 28 GB of memory.

Instances

The instances used in our experiments are based on com-
monly used benchmark instances available online (Stern
et al. 2019). We chose different sizes of maps — small (32
by 32), medium (64 by 64), and large (128 by 128) and dif-
ferent structures of the impassable obstacles in the map with
the following types — empty, maze, random, and room (see
Figure 12 for reference). Unfortunately, some of the combi-
nations of size and type were not available in the benchmark
set, therefore, we had to create our own following the struc-
ture of the existing maps.

For the placement of the agents (called scenarios), we
used the available scenarios from the benchmark sets or, if
not present, created our own. For each map, we used 5 dif-
ferent scenarios. Furthermore, we created new scenarios for

Figure 12: Types of maps used in the experimental evalua-
tion. From left to right: maze, random, and room.

each map such that the distance from start to goal of each
agent is similar and the paths of the agents need to cross
more often. We did this because the makespan optimal solu-
tion for the random scenarios rarely differs from the lower
bound. This is caused by one of the agents having a much
longer path than the others leaving them with enough time
to solve any conflicts. The behavior of our strategies may be
gravely affected by many conflicts and the need to increase
the makespan. We are also using 5 different scenarios with
this setting.

The intended way to use the benchmark set is to create an
instance of MAPF from a map and a number of agents from
a scenario. If the instance is solved in the given time limit,
an additional agent from the same scenario is added and thus
a new MAPF instance is produced. Once the instance can-
not be solved in the time limit, it is reasoned that increasing
further the number of agents cannot make the instance solv-
able. We are aware that using a reduction-based solver, this
may not always hold. Also, some of the strategies may bene-
fit from additional agents which change the restricted graph.
However, these cases are extremely rare and therefore, we
decided to use the benchmark as intended.

Results

Table 1 shows the results for all of the strategies and ap-
proaches to creating the restricted graph. Note that the base-
line strategy B considers the whole map, therefore we do
not use any of the four approaches. The strategies B and
P are optimal, therefore, we will consider them separately
opposed to the suboptimal strategies C and M. The best re-
sult for both optimal and suboptimal strategies on each line
is highlighted. We present the results divided by the type
of the map regardless of the size. This representation shows
nicely the difference between the approaches to creating the
restricted graph. For more detailed results, we include much
more detailed tables in the supplementary materials.

First, we examine the average number of vertices used by
each approach. In the table, the number indicates the ratio
of used vertices to the total number of vertices in the map.
Since B always uses the whole map, the ratio is always 1.
We can see that SP uses the least number of vertices in all
cases, on the other hand, AP uses the most and DP and
RP use about the same. This result is not surprising since
it is based on the number of paths used by each approach.
However, we can also see that the difference is much bigger
on opened maps (such as empty) and much smaller on very
restrictive maps (such as maze), meaning that in the latter
case there are not many different shortest paths for the agents
to choose from. There is also a clear order in terms of the

B P C M
type SP AP RP DP SP AP RP DP SP AP RP DP
empty 1 0.14 0.23 0.21 0.23 0.15 0.24 0.22 0.23 0.19 0.24 0.23 0.24
Used maze 1 0.18 0.2 0.18 0.19 0.20 0.22 0.21 0.21 0.22 0.22 0.22 0.22
vertices random | 1 0.19 0.27 0.24 0.25 0.22 0.3 0.28 0.29 0.25 0.31 0.3 0.31
room 1 0.21 0.24 0.22 0.22 0.23 0.27 0.25 0.25 0.24 0.29 0.27 0.28
empty 0.78 0.99 0.81 0.84 0.82 1.00 0.81 0.84 0.82 0.87 0.81 0.82 0.8
Solved maze 0.85 0.87 0.88 0.87 0.87 0.98 0.97 0.97 0.98 0.94 0.94 0.94 0.94
instances random | 0.79 0.91 0.82 0.84 0.84 1.00 0.89 0.92 0.91 0.93 0.87 0.89 0.88
room 0.8 0.83 0.81 0.82 0.82 0.97 0.92 0.95 0.94 0.89 0.89 0.89 0.89
empty 874.6 1930.5 1312.8 1081.7 1086.3 | 2395.2 1276.5 1406.7 13244 | 1517.9 1275.8 13125 1279.2
maze 890.1 1153.2 1123.6 11283 1143.3 | 17755 1633.8 1752.8 1754 14757 1452.6 1470.5 1466.1
> IPC random | 886 1668.0 1110.2 1049.9 1102.3 | 2275.5 14224 1594.6 1551.5 | 1560.7 1300.3 13742 13244
room 877.3 1386.4 1007.5 1191.6 1179.5 | 20783 1594.5 1850.6 1828.7 | 1474 1382.6 14619 1442
total 3527.9 | 6138.1 4554.1 4451.6 45114 | 8524.5 5927.2 6604.6 6458.6 | 60284 5411.3 5619.2 5511.6
empty - - - - - 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Solved maze - - - - - 0.91 0.94 0.92 0.92 0.92 0.93 0.93 0.93
optimally random | - - - - - 0.89 0.97 0.95 0.96 0.86 0.91 0.91 0.91
room - - - - - 0.86 0.93 091 0.92 0.76 0.86 0.85 0.85
empty 133 97 148 131 136 111 147 141 142 139 148 146 148
Conflicts maze 2457 1239 1804 1274 1265 3101 2969 3120 3143 3361 3482 3443 3354
random | 206 193 195 174 173 218 235 234 227 448 458 460 459
room 1007 402 313 270 289 1642 1414 1513 1423 1525 1400 1527 1545
empty 4.7 7.3 5.1 5.9 5.2 74 5.1 6 5.2 6 5.0 52 5.0
Constraints | maze 6.0 6.1 6.4 6 6.2 6.4 6.8 6.5 6.6 6.8 6.8 6.8 6.8
[millions] random | 5.4 59 6 6 6 6 6.1 6.1 6.1 6.1 5.8 6 5.8
room 4.8 5.4 5.6 54 54 5.7 5.9 5.8 5.7 5.7 59 59 5.9

Table 1: Ratio of used vertices, ratio of solved instances, sum of IPC score, ratio of instances solved optimally, average number
of conflicts, and average number of constraints. The results are split by the map type. Strategies are baseline (B), prune-and-
cut (P), makespan-add (M), and combined (C). Approaches to choosing shortest paths are single-path (SP), all-paths (AP),

random-paths (RP), and distant-paths (DP).

strategies with P using the least, C using more, and M using
even more vertices on average.

Examining the number of solved instances (ratio of solved
to all instances — 2544 for empty, 1956 for maze, 2418 for
random, 2357 for room), we see that the most successful
combination is P + SP for the optimal setting and C +
SP for the suboptimal. Again the difference across the ap-
proaches to choosing the shortest paths is least prominent on
maze maps, however, on the other types, the order is clear.
The SP is the most successful, DP and RP performing
about the same, while AP performs the worst. The baseline
B performs worse than any other used combination. Similar
results can be seen when exploring the IPC score > (Com-
puted as O if the solver did not finish in time, otherwise as
%, where min. time is the time it took the fastest solver
and solver time is the time it took the solver in question.
The score ranges from O to 1, where the bigger the num-
ber the better. The scores of all instances are summed) For
the P strategy the AP approach performs better than DP
and RP, meaning that while it did not solve more instances,
the instances it managed to solve were solved faster. For the
other strategies, the order remains the same as with the num-
ber of solved instances. It is unsurprising that the suboptimal
strategies achieved a better score that the optimal P.

%introduced at International Planning Competition, hence the
name.

We argue that these results stem from the number of used
vertices. By exploring the ASP solver, we see that for all
strategies and all additional shortest path approaches, the
number of conflicts stays mostly within the same order of
magnitude as for SP. Hence, ASP search difficulty remains
unchanged. However, compared to SP, the other approaches
add more vertices to the restricted graph to consider and,
in consequence, this increases the grounding time of clingo
which, in turn, leads to more timeouts.

The new shortest path approaches reduce the size of the
internal problem specification in terms of the number of con-
straints. We conjecture that since the new approaches gen-
erally select multiple (and more likely exclusively usable
by one agent) vertices for the restricted graph, the amount
of constraints encoding possible agent collisions is reduced.
However, as mentioned above, this has no significant impact
on the search complexity.

We also explore the quality of the solutions produced by
the suboptimal strategies. The ratio of instances solved op-
timally is again shown in Table 1. Strategy C is more often
optimal compared to M. This time, we can see the benefit of
adding extra vertices to the restricted graph. The most often
optimal approach is AP closely followed by RP and DP,
while SP achieved the worst results. The difference is again
less prominent on maze maps.

Conclusion

We extended the study on pruning maps to increase the ef-
ficiency of reduction-based MAPF solvers. In the original
paper, only one random path was chosen for each agent
to build a restricted graph. Conversely, in this paper, we
proposed several approaches to choosing multiple different
paths for each agent, providing the underlying solver with
more choices. In theory, this should make it possible for the
agents to avoid collisions more easily. In our experiments,
we found that this rarely happens and that it is more benefi-
cial to provide the solver with just one random path making
the relaxed instances simpler for the cost of possibly having
to solve more relaxations. Thus, we showed that the original
approach is justified, a result that is lacking in the original
study.

On the other hand, we also showed, that providing the
agents with more possible paths leads more often to an opti-
mal solution when using one of the suboptimal strategies.

Acknowledgments

Research is supported by project P103-19-02183S of the
Czech Science Foundation, the Czech-USA Cooperative
Scientific Research Project LTAUSA19072, and DFG grant
SCHA 550/15, Germany.

References

Gebser, M.; Kaminski, R.; Kaufmann, B.; Lindauer, M.; Os-
trowski, M.; Romero, J.; Schaub, T.; and Thiele, S. 2019.
Potassco User Guide, version 2.2.0 edition.

Gebser, M.; Obermeier, P.; Otto, T.; Schaub, T.; Sabuncu, O.;
Nguyen, V.; and Son, T. 2018a. Experimenting with robotic
intra-logistics domains. Theory and Practice of Logic Pro-
gramming, 18(3-4): 502-519.

Gebser, M.; Obermeier, P.; Schaub, T.; Ratsch-Heitmann,
M.; and Runge, M. 2018b. Routing Driverless Transport
Vehicles in Car Assembly with Answer Set Programming.
Theory and Practice of Logic Programming, 18(3-4): 520—
534.

Gebser, M.; P.Obermeier; Schaub, T.; and Wanko, P. 2020.
Collection of ASP encodings for asprilo.

Gomez, R. N.; Hernandez, C.; and Baier, J. A. 2021. A Com-
pact Answer Set Programming Encoding of Multi-Agent
Pathfinding. IEEE Access, 9: 26886-26901.

Hicker, C.; Bouros, P.; Chondrogiannis, T.; and Althaus,
E. 2021. Most Diverse Near-Shortest Paths. In Meng,
X.; Wang, F.; Lu, C.; Huang, Y.; Shekhar, S.; and Xie, X,
eds., SIGSPATIAL ’21: 29th International Conference on
Advances in Geographic Information Systems, Virtual Event
/ Beijing, China, November 2-5, 2021, 229-239. ACM.
Hanaka, T.; Kobayashi, Y.; Kurita, K.; Lee, S. W.; and
Otachi, Y. 2021. Computing Diverse Shortest Paths Ef-
ficiently: A Theoretical and Experimental Study. CoRR,
abs/2112.05403.

Husar, M.; Svancara, J.; Obermeier, P.; Bartik, R.; and
Schaub, T. 2022. Reduction-based Solving of Multi-agent
Pathfinding on Large Maps Using Graph Pruning. In Fal-
iszewski, P.; Mascardi, V.; Pelachaud, C.; and Taylor, M. E.,

eds., 21st International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2022, Auckland, New
Zealand, May 9-13, 2022, 624-632. International Foun-
dation for Autonomous Agents and Multiagent Systems
(IFAAMAS).

Kaminski, R.; Romero, J.; Schaub, T.; and Wanko, P. 2020.
How to build your own ASP-based system?! CoRR,
abs/2008.06692.

Kornhauser, D.; Miller, G. L.; and Spirakis, P. G. 1984. Co-
ordinating Pebble Motion on Graphs, the Diameter of Per-
mutation Groups, and Applications. In 25th Annual Sym-
posium on Foundations of Computer Science, West Palm
Beach, Florida, USA, 24-26 October 1984, 241-250.

Li, J.; Chen, Z.; Zheng, Y.; Chan, S.; Harabor, D.; Stuckey,
P. J.; Ma, H.; and Koenig, S. 2021. Scalable Rail Plan-
ning and Replanning: Winning the 2020 Flatland Challenge.
In Biundo, S.; Do, M.; Goldman, R.; Katz, M.; Yang, Q.;
and Zhuo, H. H., eds., Proceedings of the Thirty-First Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2021, Guangzhou, China (virtual), August 2-13,
2021, 477-485. AAAI Press.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Seghrouchni, A. E. F.; Suk-
thankar, G.; An, B.; and Yorke-Smith, N., eds., Proceed-
ings of the 19th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 20, Auckland, New
Zealand, May 9-13, 2020, 1898-1900. International Foun-
dation for Autonomous Agents and Multiagent Systems.

Nguyen, V.; Obermeier, P.; Son, T. C.; Schaub, T.; and Yeoh,
W. 2017. Generalized Target Assignment and Path Finding
Using Answer Set Programming. In Sierra, C., ed., Pro-
ceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, 1216-1223. ijcai.org.

Ratner, D.; and Warmuth, M. K. 1990. NxN Puzzle and
Related Relocation Problem. J. Symb. Comput., 10(2): 111-
138.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2011.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. In IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, 2011, 662—-667.

Silver, D. 2005. Cooperative Pathfinding. In Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE), 117-
122.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Bartak, R.; and Boyarski, E. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Surynek, P.;
and Yeoh, W, eds., Proceedings of the Twelfth International
Symposium on Combinatorial Search, SOCS 2019, Napa,
California, 16-17 July 2019, 151-159. AAAI Press.

Surynek, P. 2019. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Sat-
isfiability Modulo Theories. In Kraus, S., ed., Proceedings

of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019, 1177-1183. ijcai.org.

Svancara, J.; and Bartdk, R. 2019. Combining Strengths of
Optimal Multi-Agent Path Finding Algorithms. In Rocha,
A. P; Steels, L.; and van den Herik, H. J., eds., Proceedings
of the 11th International Conference on Agents and Artifi-
cial Intelligence, ICAART 2019, Volume 1, Prague, Czech
Republic, February 19-21, 2019, 226-231. SciTePress.

Yu, J.; and LaValle, S. M. 2013. Structure and Intractabil-
ity of Optimal Multi-Robot Path Planning on Graphs. In
Proceedings of the Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence, July 14-18, 2013, Bellevue, Washington,
USA.

