
Combining Strengths of Optimal Multi-Agent Path Finding Algorithms
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Abstract: The problem of multi-agent path finding (MAPF) is studied in this paper. Solving MAPF optimally is a com-
putationally hard problem and many different optimal algorithms have been designed over the years. These
algorithms have good runtimes for some problem instances, while performing badly for other instances. Inter-
estingly, these hard instances are often different across the algorithms. This leads to an idea of combining the
strengths of different algorithms in such a way that an input problem instance is split into disjoint subproblems
and each subproblem is solved by appropriate algorithm resulting in faster computation than using either of
the algorithms for the whole instance. By manual problem decomposition we will empirically show that the
above idea is viable. We will also sketch a possible future work on automated problem decomposition.

1 INTRODUCTION

Multi-agent path finding (MAPF) is the task to navi-
gate a set of homogeneous agents, located in a shared
environment, from their initial locations to their de-
sired goal locations in such a way that they do not
collide with each other (Silver, 2005). An abstrac-
tion, where the shared environment is represented by
a graph is often used (Ryan, 2008).

The MAPF task is strongly motivated in practice.
The applications include traffic management, not only
on roads but also air and sea traffic, warehouse man-
agement, robotics, and computer games. For a more
in-depth analysis on the applications, we refer the
reader to (Sharon et al., 2011).

Solving MAPF optimally in some manner (we
will describe this more formally later) is NP-hard,
and over the years, many optimal solvers were de-
signed. In the given publications, pathological in-
stances, where the solver is not performing well, are
often identified. These instances can be often de-
scribed by the size of the graph, the number of agents
or initial and goal locations of the agents. We sus-
pect that a randomly generated instance may contain
some underlying structure (not necessarily the patho-
logical instance) that negatively affects the solver per-
formance.

In this paper, we selected two algorithms for
which we identified the structure in instances that
make them perform poorly. Based on this characteri-
zation, we suggest a way to exploit benefits of both

solvers to solve general instances faster than either
of the original algorithms. This is based on idea of
splitting the problem instance into independent sub-
problems and solving each sub-problem by the best
algorithm for it. We will show empirically that this
idea is viable and we will suggest a method to obtain
the decomposition automatically.

2 DEFINITIONS

An instance of MAPF can be formally defined as a
pair (G,A), where G = (V,E) is a graph representing
the shared environment and A is a set of agents. Each
agent ai ∈ A is then a pair a = (a0,a+). a0 represents
the initial location (sometimes also called the start lo-
cation) of agent a, and a+ represents the goal location
of agent a. In both cases, location corresponds to a
vertex in the input graph.

Our task is to find a path for each agent that meets
the following restrictions. The time is discretized
and at each timestep, all agents move simultaneously.
Each agent can either move to a neighboring vertex or
not move (perform wait action). Let πi denote a plan
for agent i, where πi( j) = v represents that agent i at
timestep j is present in vertex v. A valid solution to
MAPF problem is a plan

π =
⋃

ai∈A

πi

satisfying the following conditions.



1. Each agent is following a valid path: either
πi( j) = πi( j+1) or (πi( j),πi( j+1)) ∈ E.

2. No two agents occupy one vertex at the same time
(vertex collision): for all pairs of different agents
ai1 and ai2 at all time steps j, πi1( j) 6= πi2( j)
holds.

3. No two agents traverse the same edge at the same
time (swap collision): for all pairs of different
agents ai1 and ai2 at all time steps j it holds that
πi1( j) 6= πi2( j+1)∨πi1( j+1) 6= πi2( j).

Note that these constraints allow agents to move
on a fully occupied cycle in the graph, as long as
the cycle consists of at least three vertices. There
are other settings in regards to the allowed move-
ments that are used. The first one requires the vertex
an agent wants to enter to be empty before entering
(sometimes called pebble motion) (Kornhauser et al.,
1984) and the second allows agent to move into an oc-
cupied vertex, provided that the vertex will be empty
by the time the agent arrives (this part is the same
as the conditions for valid solution we are using in
this paper), but forbidding movement on closed cycles
(Surynek, 2010). Algorithms presented in this paper
can be easily modified to work on either of those set-
tings.

In addition to having a valid solution, it is often
required to find a solution that is optimal (minimal)
in some cost function. Two main functions used are
sum of cost (Standley and Korf, 2011) and makespan
(Surynek, 2014). Sum of cost adds the length of each
agent’s individual plan, while makespan is equal to
the longest individual plan. It is worth noting that
these functions are not equivalent and minimizing one
or the other can result in different optimal solutions.

While there exist many polynomial time bounded
solvers that find some solution (Kornhauser et al.,
1984; de Wilde et al., 2014), to find an optimal so-
lution in either makespan or sum of cost is NP-hard
(Surynek, 2010; Yu and LaValle, 2013).

3 RELATED WORK

As indicated earlier, we picked two optimal MAPF
algorithms for which we intend to combine their
strengths. These two algorithms are CBS (Sharon
et al., 2015), which is a representative of a search
technique, and reduction of the MAPF problem to
propositional satisfiability problem (SAT) (Surynek,
2014; Surynek et al., 2016; Barták et al., 2017), which
is a representative of a reduction based approach. In
this section, we shall describe them both in detail.

3.1 Reduction to SAT

The main idea of solving MAPF by reduction to SAT
is to create propositional variables that describe the
movement of each agent in the input graph in time.
We define ϕa

v,t to be true iff agent a is present in ver-
tex v at time t and false otherwise. Now we can build
constraints over these variables to ensure that the so-
lution found by a SAT solver is indeed a valid solution
to MAPF.

While it is not necessary, introducing similar vari-
ables for edges proves to create smaller and more effi-
cient encoding of the problem (Surynek et al., 2016).
Therefore, we define ψa

(v,u),t to be true iff agent a is
traversing edge (v,u) at time t and false otherwise.
We also have to add loop edges for each vertex.

The formula that encodes the MAPF instance is
then created by the following constraints for a fixed
maximal time T :

1. Each agent a starts in its initial vertex v in timestep
0 and ends in its goal vertex u in timestep T .

ϕa
v,0 = 1 (1)

ϕa
u,T = 1 (2)

2. Each agent a can occupy up to one vertex at a
time.

∧

∀u,v∈V :u6=v

¬ϕa
u,t ∨¬ϕa

v,t (3)

3. If an agent a is present in vertex v, it must leave
through exactly one connected edge. By adding
the loop edge for each vertex, this also allows the
agent to stay in the vertex.

ϕa
v,t =⇒

∨

(v,u)∈E

ψa
(v,u),t (4)

∧

∀u,w∈V :u 6=w,(v,u),(v,w)∈E

¬ψa
(v,u),t ∨¬ψa

(v,w),t (5)

4. If an agent a is using edge (v,u), it needs to enter
the vertex u in the next timestep.

ψa
(v,u),t =⇒ ϕa

u,t+1 (6)

5. No two agents ai,a j can be present at the same
vertex at the same time nor traverse the same edge
at the same time.

∧

∀v∈V

¬ϕai
v,t ∨¬ϕa j

v,t (7)

∧

∀(v,u)∈E

¬ψai
(v,u),t ∨¬ψa j

(u,v),t (8)



Constraints 1 - 6 ensure that each agent follows
correct path, while constraints 7 and 8 ensure that
there are no vertex or swap collisions among the
agents.

To find makespan optimal solution, we iteratively
increase the maximal time limit T . The first T that
produces a satisfiable formula is optimal makespan.

There is an encoding that produces also sum of
cost optimal solution (Surynek et al., 2016), but its
details are out of the scope of this paper. However,
the variables and constraints described here are still
used.

3.2 Conflict Based Search

Conflict Based Search is a two-level search algorithm
that on top level searches a constraint tree containing a
different set of constraints in each node; on low-level
CBS finds a path for a single agent that is consistent
with the given constraints.

A constraint is a triple (a,v, t) which states that
agent a can not be present in vertex v in timestep t. We
start the search with a root node of the constraint tree
that contains no constraints. An optimal path for each
agent is found and the cost of the solution is com-
puted. All of these paths are examined and if there is
a conflict we add new nodes to the constraint tree.

Let there be a collision between agents ai and a j in
node v at time t. We want to avoid this conflict, which
means that one of the agents can not use this node at
that time. However, to ensure optimality, we need to
investigate both options. We create two new nodes in
the constraint tree as sons of the current node. Both
of the two new nodes copy all of the parent’s con-
straints and add one new constraint. One node adds
(ai,v, t) forbidding the conflicting location to agent ai
and similarly the second node adds (a j,v, t). New sin-
gle agent paths are found. Note that only path for the
agent that has a new constraint needs to be found and
other paths can be copied from the parent node.

The unexplored nodes in the conflict tree are or-
dered in ascending order by the cost of the solution.
We continuously explore the node with the lowest
cost until a solution with no conflict is found. This
yields an optimal solution.

Note that the algorithm is not dependent on the
cost function. It can be easily modified to compute
either sum of cost or makespan. Both of these func-
tions can be computed from the single agent paths.

Some improvements to this algorithm exist (Bo-
yarski et al., 2015). The main improvement is that
there may be many different optimal paths for single
agent. Picking one may create conflict while pick-
ing other may not. In the improved version, it is first

checked if there is some path that avoids current con-
flict. Another improvement is the ordering in which
we examine the conflicts.

4 COMBINED APPROACH

As can be seen from the description of the algorithms,
both are exponential in some value. In this section,
we will identify the type of instances that are hard for
each of the two algorithms respectively.

The satisfiability problem is exponential in the
number of variables of the propositional formula. The
reduction of MAPF to SAT produces one variable for
each triplet (agent, vertex, time). If we increase the
number of agents, the number of variables increases
linearly. On the other hand, if we increase the size of
the graph and assume that the starting and goal loca-
tions of the agents are randomly chosen, the length of
the optimal path (path of an agent if no other agents
are present in the graph) for each agent increases as
well. This is important because the longest of the op-
timal paths is a lower bound for the makespan T . This
means that increasing the graph size can make the
problem harder than increasing the number of agents.

Of course, this does not hold true in every case
since some formulas are harder for SAT solvers than
others. However, it can be generally said that the re-
duction of MAPF problem to satisfiability problem is
effective on smaller graphs, even with a high density
of present agents.

On the other hand, CBS is exponential in the num-
ber of conflicts between agents in the planned paths.
While it is fast (polynomial time) to find a path for
a single agent that follows the constraints defined by
the constraint tree, the binary constraint tree itself is
exponentially big in the number of explored conflicts.
This generally means that the fewer conflicts there are
on the optimal path of each agent, the faster CBS is.

Increasing the graph size, while fixing the num-
ber of agents (again assuming that the starting and
goal locations of the agents are randomly chosen), de-
creases the likelihood of conflict between the optimal
path of each agent. Conversely, increasing the number
of agents, while fixing the size of the graph, increases
the probability of conflict. This means that CBS algo-
rithm is more effective on graphs with a low density
of present agents.

Combining these two observations, we see that
there are instances where reduction to SAT outper-
forms CBS and vice versa. If we want to only choose
the appropriate algorithm for the input instance, it is
possible to just start both algorithms in parallel and
see which one terminates and yields result faster.



However, we conjure that there are hidden struc-
tures in the input instance that can be separated and
each can be solved by an appropriate algorithm. In-
deed, assume that the set of agents A can be split into
two disjoint sets A1 and A2, where any optimal solu-
tion for A1 does not collide with any optimal solution
for A2. Furthermore A1 forms dense instance, while
A2 forms sparse instance. Then it is more effective to
solve for agents from A1 by reduction to SAT and for
agents from A2 by CBS.

In general, the input instance can be split into
many disjoint sets of agents and each set can be solved
by a different algorithm. If the found optimal solu-
tions are independent (i.e. there are no collisions be-
tween these solutions), we can merge them to form a
valid optimal solution for the whole instance (Stand-
ley, 2010). This way, we are able to find the solution
faster than by running either of the algorithms on the
initial input instance.

The goal of this work is to validate the above idea
by assuming that we are given the problem decom-
position. The remaining challenge is how to identify
such problem decoposition. We will provide some
ideas on how to do this in the Future Work section.

5 PRELIMINARY RESULTS

5.1 Test Instances

To test our hypothesis about splitting an input in-
stance into several subproblems, we created a set of
instances. The instances share the same 4-connected
grid graph pictured in Figure 1. We split the graph by
hand into two disjoint section, each of which will ful-
fill one of the pathological instance described above.

Figure 1: A grid map used in the experiments. Black ver-
tices are impassable obstacles.

The section of 6 by 4 vertices in the top right cor-

ner shall play the role of small but dense part of the
map (Small), while the rest of the grid shall play the
role of large and sparse part of the map (Large). Note
that the graph is connected, so the agents can move
from one part to the other.

The number of agents in the Large part is fixed to
be 10 and the number of agents in the Small part is
increasing by one from 10 to 15. All of the agents
have randomly chosen start and goal locations in their
respective parts of the graph. Each of these settings
was used to create 5 random instances. Together, this
yields 30 instances.

We are also given the information about how to
split the agents into the desired disjoint subsets. No
automatic splitting is implemented at this time.

5.2 Measured Results

The two solvers used are CBS (Sharon et al., 2015)
and reduction of MAPF to SAT via the Picat language
and compiler (version 2.2#3) (Zhou et al., 2015).

Picat is a logic-based multi-paradigm language
that integrates logic programming, functional pro-
gramming, and constraint programming. Most impor-
tantly for our purposes, it contains a SAT compiler
that translates constraints modeled by the Picat lan-
guage into a logic formula in the conjunctive normal
form (CNF) that is in turn solved by the built-in SAT
solver. The main advantage of this approach is the
simplicity of the code, while being comparable with
the state of the art SAT-based MAPF solver (Barták
et al., 2017).

The used cost function is sum of cost since this is
the cost function already available in CBS implemen-
tation. However, it is easy to see that the experiments
can be done with makespan cost function.

All experiments were conducted on a PC with an
Intel R© CoreTM i7-2600K processor running at 3.40
GHz with 8 GB of RAM.

Given the two subsets of agents ASmall , ALarge and
shared graph G, we let both of the solvers compute
instance (G,ASmall) and (G,ALarge) with time limit
of 600 seconds. Combination of these solutions is a
solution to the initial instance (G,A). We measured
the computation time for each of the subinstance, let
name them PicatSmall, PicatLarge, CBSSmall, and
CBSLarge.

The times that we are interested in are

Picat = PicatSmall +PicatLarge (9)

CBS =CBSSmall +CBSLarge (10)

Combined = PicatSmall +CBSLarge (11)

The averages of these times for each setting of the
input instances are shown in Figure 2.



Figure 2: Experimental results using translation to SAT (via
Picat), CBS algorithm, and combination of both.

We can see that for the instances with fewer
agents, the CBS solver is a clear winner. However,
as the number of agents increase (and thus the Small
part becomes denser), the CBS solver is not able to
find a solution within the given time limit.

The computation time PicatSmall increases as
well, but not as rapidly. We can see that the biggest
portion of the computation time Picat is PicatLarge.

These results clearly support our theory that split-
ting the input instance and using different solvers for
each part is beneficial in terms of total computation
time.

6 FUTURE WORK

It is clear that an automatic way of splitting the agents
into independent subsets is needed in order to create a
useful algorithm. To do this, we propose to use Inde-
pendence Detection (ID) algorithm (Standley, 2010).
ID can be used to split an instance into independent
subproblems such that combining their solutions yield
a valid solution for the whole instance. Note that if the
solutions for the independent subproblems are opti-
mal then the combined solution for the whole instance
is also optimal (Standley, 2010).

ID works as shown in Algorithm 1. We start by
assigning each agent into a group and finding an opti-
mal path for each group. This is a single agent path at
the beginning. We then repeatedly check the solutions
of all groups for conflicts. If there is no conflict, and
each group has an optimal plan, these plans can be
combined into an optimal plan for the whole instance.

Assume that there are two groups conflicting (G1
and G2). If we can replan one of the groups while
avoiding conflict with the other, and keeping the same
cost of the found plan, we will keep that solution
(lines 9 – 14). If no such replanning is possible, we
have to merge G1 and G2 into a single new group and

Algorithm 1: Independence Detection.

1: assign each agent to a group
2: compute plan for each group
3: while there is a conflict in plans do
4: G1, G2 ← conflicting groups
5: if G1 and G2 conflicted before then
6: merge G1 and G2 into new group G
7: find plan for G
8: continue
9: else if can replan G1 and avoid G2 then

10: replan G1 and avoid G2
11: continue
12: else if can replan G2 and avoid G1 then
13: replan G2 and avoid G1
14: continue
15: else
16: merge G1 and G2 into new group G
17: find plan for G
18: end if
19: end while
20: solution← path of all groups combined

find a new optimal plan (line 16).
By changing the plan of one group, we can create

a new conflict with some other group. This can lead to
infinite cycles. To fix this problem, we have to keep
track of groups that were already checked for con-
flicts. If we visit such a pair again, we are possibly in
a cycle, therefore, we merge the groups immediately
into a new group and find optimal paths for that group
(line 5).

There exist some enhancements for ID algorithm
(Standley, 2012). These enhancements include the
way how to prioritize the replanning of the conflict-
ing groups, what conflict to resolve first, and how to
choose the initial path for singe-agent groups (if there
are more possible paths).

Note that ID is independent of the solver used to
compute plans for the groups. We can run both algo-
rithms (CBS solver and Picat solver) simultaneously
each time and use the result of the algorithm that ter-
minates first. If it is not possible to run both algo-
rithms in parallel, we can start with either one with
given time limit. If no solution is found in that time,
we run the other algorithm. Again if no solution is
found, we increase the time limit and repeat.

We hypothesize that while the groups are small
(and thus are not dense), CBS solver will outperform
Picat solver. As the groups get bigger (indicating
that there are many conflicts among the agents), Pi-
cat solver will outperform CBS solver.



7 CONCLUSION

In this paper, we studied the problem of multi-agent
path finding (MAPF), namely, we suggested how
to combine solvers with complementary strengths.
We analyzed two state-of-the-art solvers, CBS and
reduction-based Picat solver, used to solve MAPF op-
timally and for each of them, we identified what type
of instances are hard for it. We tested this empirically
and observed that dense instances are harder for CBS
algorithm and instances on large graphs are hard for
reduction based algorithms. By manual decomposi-
tion of an example problem, we showed that the pro-
posed combination of solvers indeed improves run-
time significantly. As a future (not-yet-implemented)
work, we proposed how to automatically split in-
stances into independent subproblems by using the
Independence Detection algorithm.
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