
On Modelling Multi-Agent Path Finding
as a Classical Planning Problem

Jindřich Vodrážka
Charles University

Faculty of Mathematics and Physics
Prague, Czech Republic

vodrazka@ktiml.mff.cuni.cz

Roman Barták
Charles University

Faculty of Mathematics and Physics
Prague, Czech Republic
bartak@ktiml.mff.cuni.cz

Jiřı́ Švancara
Charles University

Faculty of Mathematics and Physics
Prague, Czech Republic
Jiri.Svancara@mff.cuni.cz

Abstract—Multi-Agent Path Finding (MAPF) deals with find-
ing collision-free paths for a set of agents. It is a special case of a
planning problem with only two actions – move and wait – and
with one major constraint of no collision between the agents.
The paper addresses the question of how to model MAPF as
a classical sequential planning problem. Several models in the
PDDL language are proposed and empirically compared.

Index Terms—Multi-Agent Path Finding, Classical Planning,
Modeling

I. INTRODUCTION

With the increasing development of autonomous agent tech-
nologies, the need to coordinate the movement of many agents
is even more important. The application areas range from
video games to automated warehousing, and other areas, where
automation is expected soon such as automated traffic control,
taxiing, and road junction control.

There exists an abstract framework of multi-agent path
finding (MAPF) dealing with finding collision-free paths for a
set of agents. Most ad-hoc solvers that have been developed to
solve MAPF problems are based either on search techniques or
problem reformulation (for example to the problem of Boolean
satisfiability [1]). Nevertheless, MAPF is also a special kind
of a planning problem with two types of actions – move to a
neighboring node or stay at the current node.

There are several reasons to undergo an endeavour of en-
coding MAPF as a classical planning problem. It will provide
another problem compilation method to solve MAPF prob-
lems. Also, the compilation of MAPF to classical planning will
provide some guidelines on how to encode specific problems
as planning problems. Note that despite advances in automated
planning and the importance of problem formulation for the
efficiency of planning [2] there are still no guidelines for
encoding planning problems in a way efficient for automated
planners. We believe that the modeling ideas presented in
the paper can be exploited in other coordination problems
modelled as sequential planning problems.

We will present how an inherently parallel problem of
MAPF can be encoded as a sequential planning problem.
We will also show how the sequential plans obtained from
automated planners can be parallelised to obtain MAPF plans
with agents that are moving at the same time. Several models

in the PDDL modeling language [3] will be presented and em-
pirically compared. These models and the techniques behind
them are the major novel contribution of the paper.

II. BACKGROUND ON CLASSICAL PLANNING

We work with classical STRIPS planning [4] that deals
with sequences of actions transferring the world from a given
initial state to a state satisfying certain goal conditions. World
states are modelled as sets of propositions that are true in
those states, and actions are modelled to change the validity
of certain propositions.

Let P be a set of all propositions modelling properties of
world states. Then a state S ⊆ P is a set of propositions that
are true in that state (other propositions are false).

Each action a is described by three sets of propositions
(B+

a , A
+
a , A

−
a), where B+

a , A
+
a , A

−
a ⊆ P,A+

a ∩ A−
a = ∅.

Set B+
a describes positive preconditions of action a, i.e.,

propositions that must be true right before the action a.
Some modeling approaches allow also negative preconditions,
but these preconditions can be compiled away. Action a is
applicable to state S iff B+

a ⊆ S. Sets A+
a and A−

a describe
positive and negative effects of action a, i.e., propositions that
will become true and false in the state right after executing
the action a. If an action a is applicable to state S then the
state right after the action a is γ(S, a) = (S\A−

a)∪A+
a , while

γ(S, a) is undefined if an action a is not applicable to S.
The classical planning problem, also called a STRIPS

problem, consists of a set of actions A, a set of proposi-
tions S0 called an initial state, and a set of goal propo-
sitions G+ describing the propositions required to be true
in the goal state (again, the negative goal is not assumed
as it can be compiled away). A solution to the planning
problem is a sequence of actions a1, a2, . . . , an such that
S = γ(...γ(γ(S0, a1), a2), ..., an) and G+ ⊆ S. This sequence
of actions is called a plan.

III. BACKGROUND ON MAPF

An instance of MAPF is defined as a pair (G,A), where
G = (V,E) is a graph representing the shared environment
and A is a set of agents. Each agent ai ∈ A is a pair
a = (a0, a+), where a0 represents the initial location (or start

Fig. 1: Types of possible conflicts. From left to right: an edge
conflict, a vertex conflict, a following conflict, a cycle conflict,
and a swapping conflict. Figure taken from [5]

location), and a+ represents the goal location of agent a. In
both cases, location corresponds to a node in the input graph.

Time is assumed to be discretized and at each timestep, each
agent can either move to a neighboring node or not move –
perform wait action. All agents are moving simultaneously.

A solution to MAPF is a sequence of nodes πi for each
agent ai ∈ A such that πi(0) is the start location of ai, πi(|πi|)
is the goal location of ai and all of the nodes in between
form a valid path. Furthermore, we request that there are no
conflicts among the agents. Using MAPF terminology [5], we
distinguish 5 possible conflicts (see Figure 1).

For most realistic applications, where the moving agents
are physical entities (cars, ships, planes, etc.) the edge, vertex,
and swapping conflict are forbidden, since in those cases, the
agents share the same physical location. As for the following
and cycle conflict, it depends on the intended application.

In this paper we will focus on two possible settings: (I)
pebble-motion – all of the defined conflicts are forbidden and
(II) parallel-motion – edge, vertex, and swapping conflict are
forbidden while following and cycle conflicts are allowed.

IV. PROBLEM MODELING

The problem that we address in this paper, is how to
represent valid MAPF plans as classical sequential plans.
Recall that the agents in the MAPF plan move in parallel,
while the classical plan is a sequence of actions.

A. Sequential models

A straightforward sequential planning model for MAPF uses
only move actions without explicit waiting actions – when one
agent moves, all other agents wait. We can model the location
of each agent via predicates at/2 (the number two indicates
the number of attributes of the predicate; in the case of at/2,
the first attribute indicates the robot and the second attribute
the location of that robot). For the move action we need to
ensure that the node, to which an agent moves, is not occupied
by another agent. As we do not use negative preconditions, we
can use another predicate free/1 to describe that a node is
not occupied. At the initial state, each node is either free or
there is exactly one agent at the node. This invariant is kept
in every state – if an agent moves away from some node, the
node becomes free, and vice versa, when an agent moves to
some node, that node becomes occupied by that agent and
it is no longer free. The planning goal is specified as goal
locations of individual agents. The model of the move action
in PDDL may then look like this (we believe that PDDL syntax

is straightforward and it is easy to map to the formal definition
of a planning action):
(:action move

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex)
:precondition (and

(at ?A ?ORIG)
(connected ?ORIG ?DEST)
(free ?DEST))

:effect (and
(at ?A ?DEST)
(free ?ORIG)
(not (at ?A ?ORIG))
(not (free ?DEST))))

The only additional predicate used by the above model is
connected/2, which models the graph. In this straightfor-
ward model exactly one agent moves to an empty node at any
time. Clearly, the sequential plan is a valid plan for MAPF and
it corresponds to the pebble-motion – there is no conflict from
those shown in Figure 1 because there are no parallel actions.
As this plan uses exactly one action at each time step, it has
a larger makespan than plans with parallel actions.

1) Plan parallelisation: We can parallelise the sequential
plan by cutting the original plan into sub-plans, where each
sub-plan is a continuous sequence of move actions of different
agents. Actions from each sub-plan are then executed in
parallel and other agents are waiting during that parallel step.

To prove that this parallelisation produces a valid MAPF
plan, we examine each of the 5 possible conflicts. At each
parallel step, every agent moves at most once, we assume that
the sequential plan is valid, and we do not change the order
of the move actions.

Vertex conflict occurs when 2 agents move into the same
node before one of them moves out, however, this would cause
a vertex conflict in the sequential plan as well. Therefore the
parallelisation can not cause a vertex conflict. If there are no
vertex conflict then edge conflicts are also impossible, since
there can not be 2 agents present in the same node to move
over the same edge.

Assume that agents a1, . . . , ak move on a cycle and agent
a1 moves first in the sequential plan. Then a1 cannot move
to its destination node, as this node is still occupied by agent
a2 that will move later in the sequential plan. Hence no such
cycle can be obtained by parallelisation as it would violate
the preconditions of actions. For this reason both cycle and
swapping conflicts are not possible. Notice that due to the
above reasons, from pebble-motion plans we can never obtain
parallel plans where cycles are present in a parallel step.

Finally, the following conflict may appear in the parallel
plan. Assume a simple sequential plan ((move a1 n1 n2)
(move a2 n0 n1)). During parallelisation, these two ac-
tions are put to a single parallel step as they deal with different
agents. The agents move like a train at this step – there is the
following conflict. To prevent the following conflicts, we can
check them during parallelisation so we cut the sequential plan
to smaller sub-plans (in the worst case, we got the original
sequential plan with no parallel steps).

In summary, the pebble-motion model describes MAPF
problems where the edge, vertex, swap, and cycle conflicts
are forbidden. The following conflict may or may not be

Fig. 2: Invalid MAPF plan if one agent (red) stays at the edge
while other agents go through the end nodes of that edge.

allowed depending on how parallelisation is realized. The
open question now is if it is possible to design a sequential
planning model where the cycle conflict is also allowed when
we parallelise the sequential plan.

2) Modeling cycles: To model the cyclic movement, we
utilize two ideas. First, instead of doing a complete move to
the next node, an agent a1 moves only to the edge, which must
be free at the time of the move. We call it opening the move.
Agent a1 completes (closes) the move to its destination node
later, when that node is empty, which may happen immediately
after or later after another agent a2 staying at the node leaves
it. The danger here is that while agent a1 stays on the edge,
other agents may use the end nodes of that edge, which may
give invalid MAPF plans (see Figure 2). Hence the second
idea of the model is using a freeze mechanism to disallow
usage of these nodes by other agents.

Each original move action is now modelled using two
actions – an opening action moves an agent to the edge and a
closing action moves the agent from the edge to the destination
node. When an agent is on the edge, the edge needs to be
marked as occupied in both directions so no other agent moves
to the same edge (predicate busyLink/3). We distinguish
two situations there – if the destination node is already free, the
agent freezes that node so no other agent can use it before the
agent completes its move; if the destination node is occupied,
we switch to a special mode lock, where the agent pushes
the other agent out of the destination node. The destination
cannot be frozen yet, but it is required from the other agent
and when the other agent leaves it, the node will be frozen.
The following two actions freeze and require show these
possible openings of movement. Notice that instead of the
predicate connected/2 , we now use freeLink/2 and
busyLink/3 to model the graph and the agent that occupies
the edge.
(:action freeze

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex)
:precondition (and

(normal)
(at ?A ?ORIG)
(freeLink ?DEST ?ORIG)
(freeLink ?ORIG ?DEST)
(free ?DEST))

:effect (and
(free ?ORIG)
(frozen ?A ?DEST)
(busyLink ?DEST ?ORIG ?A)
(busyLink ?ORIG ?DEST ?A)
(not (free ?DEST))
(not (at ?A ?ORIG))
(not (freeLink ?DEST ?ORIG))
(not (freeLink ?ORIG ?DEST))))

(:action require
:parameters (?A - agent ?ORIG - vertex ?DEST - vertex
?AN - agent)
:precondition (and

(normal)
(at ?A ?ORIG)
(freeLink ?DEST ?ORIG)
(freeLink ?ORIG ?DEST)
(at ?AN ?DEST))

:effect (and
(lock)
(free ?ORIG)
(require ?A ?DEST)
(blocking ?AN ?DEST)
(busyLink ?DEST ?ORIG ?A)
(busyLink ?ORIG ?DEST ?A)
(not (normal))
(not (at ?A ?ORIG))
(not (at ?AN ?DEST))
(not (freeLink ?DEST ?ORIG))
(not (freeLink ?ORIG ?DEST))))

As soon as the blocking agent moves away it can leave
the node frozen for the agent that required the node. The
information about the agent who made the request is stored
in the predicate require/2. Note that only one agent is
allowed to require a certain node because the predicate (at
?AN ?DEST) is replaced by (blocking ?AN ?DEST) in
the state. If the destination node has already been free, the
action freeze marks the node with the predicate frozen/2
so that the agent can immediately complete its move using the
following action finishMove:
(:action finishMove

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex)
:precondition (and

(normal)
(frozen ?A ?DEST)
(busyLink ?DEST ?ORIG ?A)
(busyLink ?ORIG ?DEST ?A))

:effect (and
(at ?A ?DEST)
(freeLink ?ORIG ?DEST)
(freeLink ?DEST ?ORIG)
(not (frozen ?A ?DEST))
(not (busyLink ?DEST ?ORIG ?A))
(not (busyLink ?ORIG ?DEST ?A))))

The action finishMove is used for all agents to close their
move to the destination node. However, if the agent starts
moving using the action required we still need to freeze
its destination node, since it is occupied. In this situation, we
temporarily forbid all other movements, by using the predicate
lock. In the normal mode the agents can open and close
movements, while in the lock mode, the cycles and trains
are being resolved by moving all of the required agents to
the edges and freezing their destination nodes. This is done
by action passRequire that moves the blocking agent to
an edge, while requiring the destination node from another
agent. Notice that this action also freezes the origin node for
the previous agent.
(:action passRequire

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex
?AN - agent ?AP - agent)
:precondition (and

(lock)
(require ?AP ?ORIG)
(blocking ?A ?ORIG)
(freeLink ?DEST ?ORIG)
(freeLink ?ORIG ?DEST)
(at ?AN ?DEST))

:effect (and

Fig. 3: Describing cycles in the sequential model, the shadow
nodes are frozen (the color indicates for which agent) so other
agents cannot used them.

(frozen ?AP ?ORIG)
(require ?A ?DEST)
(blocking ?AN ?DEST)
(busyLink ?DEST ?ORIG ?A)
(busyLink ?ORIG ?DEST ?A)
(not (require ?AP ?ORIG))
(not (blocking ?A ?ORIG))
(not (at ?AN ?DEST))
(not (freeLink ?DEST ?ORIG))
(not (freeLink ?ORIG ?DEST))))

The lock mode is abandoned when the last agent moves
to the edge and its destination node is free. This agent can be
the head of the train or it could be the last agent in the cycle.
Notice that the agent that started the lock mode via action
require actually left its origin node and made that node
free. This allows the last agent to use it and close the cycle.
The following action does this resolving move (i.e. close the
loop or move train head) and returns to the normal mode,
where the agents at edges can close their moves.
(:action confirm

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex
?AP - agent)

:precondition (and
(lock)
(require ?AP ?ORIG)
(blocking ?A ?ORIG)
(freeLink ?DEST ?ORIG)
(freeLink ?ORIG ?DEST)
(free ?DEST))

:effect (and
(normal)
(frozen ?A ?DEST)
(frozen ?AP ?ORIG)
(busyLink ?DEST ?ORIG ?A)
(busyLink ?ORIG ?DEST ?A)
(not (lock))
(not (free ?DEST))
(not (require ?AP ?ORIG))
(not (blocking ?A ?ORIG))
(not (freeLink ?DEST ?ORIG))
(not (freeLink ?ORIG ?DEST))))

After switching from lock mode to normal mode, all
participating agents are sitting at edges and their destination
nodes are frozen so no other agent can use them (see Figure 3).
In this situation, other agents can start moving, other loops or
trains may be formed or agents close their moves from the
edge to the next node.

To prove that the valid sequential plan represents a valid
MAPF plan, we show how to parallelise it. In any valid se-
quential plan, we can reshuffle the actions as follows. For each
opening action freeze we find the corresponding closing
action finishMove and move it backward in the plan to be
right after freeze. This is possible because all preconditions
of finishMove are already provided by freeze and no
action between their original positions in the plan altered

these preconditions. Actions require, passRequire, and
confirm will always be grouped to a sequence starting with
require, followed by a (possibly empty) sequence of actions
passRequire, and concluded by the action confirm. We
can move their corresponding closing actions finishMove
right after the action confirm finishing the block. This is
again possible due to the same reasons as above. After reshuf-
fling, the sequential plan has a specific structure consisting
of pairs of actions freeze and finishMove for the same
agent – they represent move of that agent – and a group of
actions require, passRequire, and confirm followed
immediately by the closing actions finishMove for all the
agents in that group – this group represents a parallel move
of all agents in the group, it could be a train or a cycle.

The obtained sequential plan is a valid MAPF plan with no
edge, vertex, and swapping conflicts. The following and cycle
conflicts are allowed. Let us just highlight, that a cycle with
only two agents (the swapping conflict) is still not allowed, as
the second agent would need to use the same edge as the first
agent, just in the opposite direction, but this edge has already
been occupied by the first agent (busyLink). Note finally,
that we can use the same parallelisation as we discussed for the
pebble-motion model, only the groups of actions in the lock
mode must always be part of a single parallel step. This is
possible since in each such group each agent does exactly one
move which follows the principle of parallelisation – no agent
appears in more than one move action.

B. Layered model

We will now describe yet another model that forces the
planner to produce plans with a specific layered structure that
can be easily translated into a parallel plan. The main idea
is to make all agents act, either move or wait, by passing
a token until all the agents take a turn. This is realized
through predicate token/1 that marks the active agent and
the predicate next/2 that marks the next agent to take an
action. The next/2 predicate is defined in the initial state
and it defines a loop over all agents in the particular planning
task. Every action in this model passes the token on to the
next agent. In this way, the actions in the resulting plan
are always structured into layers where each agent takes a
turn exactly once. Two such layers contain one valid parallel
step. Following the same principle as in the model described
above, agents first move from nodes to edges using action
startMove:
(:action startMove

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex
?NA - agent)

:precondition (and
(token ?A)
(next ?A ?NA)
(ready ?A)
(at ?A ?ORIG)
(freeLink ?DEST ?ORIG)
(freeLink ?ORIG ?DEST))

:effect (and
(token ?NA)
(free ?ORIG)
(moving ?A ?DEST)
(busyLink ?ORIG ?DEST ?A)
(busyLink ?DEST ?ORIG ?A)

(not (token ?A))
(not (ready ?A))
(not (at ?A ?ORIG))
(not (freeLink ?DEST ?ORIG))
(not (freeLink ?ORIG ?DEST))))

Then, agents move from edges to their destination nodes using
action finishMove. The predicate moving/2 prevents the
agent from moving from node to an edge in one layer and
returning back to the same node in the next layer.
(:action finishMove

:parameters (?A - agent ?ORIG - vertex ?DEST - vertex
?NA - agent)

:precondition (and
(token ?A)
(next ?A ?NA)
(moving ?A ?DEST)
(free ?DEST)
(busyLink ?ORIG ?DEST ?A)
(busyLink ?DEST ?ORIG ?A))

:effect (and
(token ?NA)
(ready ?A)
(at ?A ?DEST)
(freeLink ?ORIG ?DEST)
(freeLink ?DEST ?ORIG)
(not (token ?A))
(not (free ?DEST))
(not (moving ?A ?DEST))
(not (busyLink ?ORIG ?DEST ?A))
(not (busyLink ?DEST ?ORIG ?A))))

Splitting the movement into two parts is necessary when we
need a group of agents to move in parallel along the cycle.
Because the agents move to the edge first and in the second
round, they complete the move to the next node, the cyclic
movement can be directly realized. Notice also that the action
finishMove ensures that the destination node is free. This
prevents the edge and vertex conflicts. Freeze mechanism, as
used by the sequential model, is not needed there because, in
one round, all acting agents move to the edge and in the next
round, they move to the free node. It is not possible for an
agent to stay at the edge, while other agents use the nodes
of that edge (the invalid MAPF plan as depicted in Figure 2
cannot be realized there).

Due to the token-passing mechanism, each agent must
act in each round, so now we need to explicitly model
the wait actions. Again, a pair of actions startWait and
finishWait is used there. As the token is moving between
the agents in a loop, the agent waiting in a node cannot
distinguish the first and second round within a single layer
just from the token. That is why we use predicate ready
that basically expresses that the agent is neither moving nor
waiting (recall that negative preconditions are not allowed).
(:action startWait

:parameters (?A - agent ?V - vertex ?NA - agent)
:precondition (and

(token ?A)
(next ?A ?NA)
(ready ?A)
(at ?A ?V))

:effect (and
(token ?NA)
(waiting ?A)
(not (ready ?A))
(not (token ?A))))

(:action finishWait
:parameters (?A - agent ?V - vertex ?NA - agent)
:precondition (and

(token ?A)
(next ?A ?NA)
(waiting ?A)
(at ?A ?V))

:effect (and
(token ?NA)
(ready ?A)
(not (waiting ?A))
(not (token ?A))))

The proof that any valid sequential plan is a valid MAPF
plan is now straightforward as the sequence of actions can
be naturally cut to parallel steps. As already mentioned, edge
and vertex conflicts are forbidden there. The swapping conflict
is also prevented as the agents block the edge using predicate
busyLink. Trains and cycles are allowed as agents first move
to the edge and then complete the move to the next node which
was made free in the meantime. Notice also that the fixed order
of agents in the token-passing mechanism does not clash with
the train and cycle movement as agents can move to the edge
in an arbitrary order.

V. EMPIRICAL EVALUATION

To compare the proposed models, we used MAPF instances
from a benchmark set [5]. The maps selected were empty8,
empty16, random32, room32, and maze32. The first two are
maps with no obstacles and dimensions 8 by 8 and 16 by 16,
respectively. The rest of the maps are of dimensions 32 by 32
with obstacles either randomly placed or placed to represent
some structure. The number of agents for each map increases
from 1 to 20. For each of the settings, 5 different instances
were used. This gives us 500 instances in total.

We also executed the same set of instances on a makespan
optimal SAT-based solver written in Picat programming lan-
guage that automatically translates constraints into a proposi-
tion formulae [6]. Note that for the proposed PDDL models we
used a solver that does not guarantee optimality with respect to
any cost function – FF solver [7]. Comparing with an optimal
solver will indicate how close to the optimum the plans are.

For each problem instance, the runtime was limited to 30
minutes and the used RAM was limited to 8GB. The computer
used was equipped with Intel(R) Xeon(R) CPU E5-2630 v3
@ 2.40GHz. For the planning-based models, we used FF
solver [7] version 2.3, and for the SAT-based solvers, we used
Picat language and compiler version 2.6#2.

To recapitulate, we will be comparing the following models:
• Pebble - The basic PDDL pebble motion model, i.e. no

following or cycle conflicts.
• Picat-Pebble - SAT-based optimal solver that models

pebble motion.
• Layered - The layered PDDL model with token that

allows following conflicts and cycle conflicts.
• Sequential - The sequential PDDL model that allows

following conflicts and cycle conflicts.
• Picat - SAT-based optimal solver that allows following

conflicts and cycle conflicts.
To compare the efficiency of the models, we compute a

PAR10 score (see Table I). This score reflects the runtime
and adds an extra penalty for each timeouted instance. We

Pebble Picat-Pebble Layered Sequential Picat

13.6 40.0 5767.5 12226.3 289.2

TABLE I: PAR10 scores for all of the compared models.

compute the PAR10 as (sum of all runtimes + penalty for
each timeouted instance) / number of instances. The penalty
is defined as TimeLimit × 10, therefore the total penalty is
18000. From the definition of the PAR10, we can see that the
lower the score, the better the model performed.

Since modeling different constraints can lead to different
complexities, we shall compare the models in two groups
- the solvers that model pebble-motion (Pebble and Picat-
Pebble) and the models that allow following and cycle conflicts
(Layered, Sequential and Picat). We start with the latter.

From the obtained scores, we can see that there is a clear or-
dering in performance for the models. The optimal SAT-based
solver achieved the best results with only 5 timeouted instance.
The models proposed in this paper are ordered Layered with
144 and Sequential with 308 timeouted instances. The result
clearly shows the advantage of a rather simple model Layered
over carefully crafted representation Sequential.

The ordering in efficiency of the models can be further seen
in Figure 4, which shows how many instances (x-axis) were
solved in a given time limit (y-axis). Again, the lower the line,
the better the model performed. The ordering in performance
remains the same as with the PAR10 scores. This is still true
when comparing results for individual types of maps.

Fig. 4: Number of instances each of the described model
solved in a given time limit.

The order in which the agents pass the token in the Layered
model is not strictly defined. We ran experiments with different
orderings – random order, and ascending and descending order
by the length of the shortest path between agents start and
goal node. The experiments did not prove that there is any
significant difference in the order of the agents.

When comparing the quality of the plan, the simple model
Layered is not so bad in comparison with the optimal solver.
Out of the 356 instances, the model Layered solved, 232 were
solved optimally. Those that were not solved optimally had a
solution on average 6.2% worse than optimum.

For the layered models, it is simple to obtain the length
of MAPF plan from the number of actions as |π| =⌈

number of actions
2×number of agents

⌉
Finding a parallel MAPF plan from the actions of model

Sequential is not as straight forward, so we do not include

this measure.
As for the solvers using the pebble-motion model variants,

the planning-based solver outperformed the optimal SAT-based
solver. This is another example that models with simple actions
can be very efficient. Note, however, that the planning-based
solver is not optimal with regards to any cost function.

VI. CONCLUSIONS

In the paper, we proposed PDDL models to describe MAPF
problems. The straightforward pebble-motion model cannot
describe plans with cycles, but it achieved very good perfor-
mance. We extended the model to cover cycles, but the per-
formance degraded significantly. Nevertheless, this sequential
model gives the core idea of splitting actions into opening
actions moving the agent to the edge and closing actions
moving the agent from the edge to the destination node. By
forcing agents to do these actions in a synchronous way using
the token-passing mechanism we naturally define the parallel
MAPF steps in the classical sequential plan. This layered
model also achieved very good performance.

The paper also gives some modelling ideas that could be
applicable to other problems, especially, when synchronization
is needed. The experiments showed that simpler planning do-
main models (pebble-motion and layered models) can achieve
much better efficiency in comparison with carefully designed
but complex models (sequential model).

Acknowledgment: Research is supported by the project
P103-19-02183S of the Czech Science Foundation, and by the
project 90119 of the Charles University Grant Agency.

REFERENCES

[1] P. Surynek, “Unifying search-based and compilation-based approaches
to multi-agent path finding through satisfiability modulo theories,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
S. Kraus, Ed. ijcai.org, 2019, pp. 1177–1183. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/164

[2] R. Barták and J. Vodrážka, “An experimental study of influence of
modeling and solving techniques on performance of a tabled logic
programming planner,” Fundam. Inform., vol. 149, no. 1-2, pp. 35–60,
2016. [Online]. Available: https://doi.org/10.3233/FI-2016-1442

[3] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, “Pddl - the planning domain definition lan-
guage,” Yale Center for Computational Vision and Control, Tech. Rep.
CVC TR98003/DCS TR1165, 1998.

[4] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” in Proceedings
of the 2nd international joint conference on Artificial intelligence, ser.
IJCAI’71, San Francisco, CA, USA, 1971, pp. 608–620. [Online].
Available: http://dl.acm.org/citation.cfm?id=1622876.1622939

[5] R. Stern, N. R. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li,
D. Atzmon, L. C. adn T. K. Satish Kumar adn Eli Boyarski, and R. Barták,
“Multi-agent pathfinding: Definitions, variants, and benchmarks,” in the
International Symposium on Combinatorial Search (SoCS), 2019.

[6] R. Barták, N. Zhou, R. Stern, E. Boyarski, and P. Surynek,
“Modeling and solving the multi-agent pathfinding problem in picat,”
in 29th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2017, Boston, MA, USA, November 6-8, 2017.
IEEE Computer Society, 2017, pp. 959–966. [Online]. Available:
https://doi.org/10.1109/ICTAI.2017.00147

[7] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan generation
through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

