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Abstract. The problem of optimal multi-agent path finding (MAPF) is addressed 

in this paper. The task is to find optimal paths for mobile agents where each of 

them need to reach a unique goal position from the given start with respect to the 

given cost function. Agents must not collide with each other which is a source of 

combinatorial difficulty of the problem. An abstraction of the problem where dis-

crete agents move in an undirected graph is usually adopted in the literature. Spe-

cifically, it is shown in this paper how to integrate two variants of independence 

detection technique developed for search based MAPF solving into a compila-

tion-based technique that translates the instance of the MAPF problem into prop-

ositional satisfiability formalism (SAT). The independence detection technique 

allows decomposition of the instance consisting of a given number of agents into 

instances consisting of small groups of agents with no interaction across groups. 

These small instances can be solved independently and the solution of the origi-

nal instance is combined from small solutions eventually. The reduction of the 

size of instances translated to the target SAT formalism has a significant impact 

on performance as shown in the presented experimental evaluation. The new 

solver integrating SAT translation and a more advanced variant of independence 

detection is shown to be state-of-the-art in its class for optimal MAPF solving. 

Keywords: Multi-agent path-finding (MAPF), independence detection (ID), 

propositional satisfiability (SAT), cost optimality, makespan optimality, sum-

of-costs optimality, SAT encodings, path-finding on grids 

1 Introduction 

Multi-agent path finding (MAPF) is the task is of finding collision free paths for a set 

of mobile agents so that each agent can reach its goal position from given start by fol-

lowing its path [13, 19, 22, 27]. The MAPF problem recently attracted considerable 

attention from the research community and many concepts and techniques have been 

devised to address this problem. 

An abstraction in which an environment with agents is represented by undirected 

graph is used in the literature [17, 36]. Agents in this abstraction are items placed in 
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vertices of the graph. Edges represent passable regions. Physical space occupancy of 

agents is represented by the restriction that at most one agent can be placed in each 

vertex. The time is discrete which means that agents can do a single move in a time 

step. 

Various movement schemes exist for this MAPF abstraction graph. Usually an 

agent can move into an unoccupied neighbor vertex not entered by another agent at the 

same time – this will be called move-to-unoccupied variant. Obviously, this variant re-

quires at least one vertex in the graph unoccupied to be able to perform some move-

ments at all. 

But other variants like chain movement of agents where a chain of agents moves all 

at once with only the leader entering the unoccupied vertex exist [28]. Even cases with 

no unoccupied vertex in the graph were described in the literature [32]. These usually 

allow movements of agents by rotating them along non-trivial cycles in graph (that is, 

cycles containing at least 3 vertices. Otherwise, allowing rotation over a trivial cycle 

consisting of a single edge would simplify the problem to a practically less useful var-

iant, as arbitrary swaps of pairs of agents would then be possible). 

The techniques shown in this paper are generic across all these variants although 

we base our presentation just on the basic variant move-to-unoccupied. 

The MAPF problem and its variants are strongly practically motivated. Applications 

range from navigation of multiple mobile robots [5, 8], through traffic optimization [12, 

15], to movement planning in computer games [34]. We refer the reader to various 

studies such as [19, 20] for the detailed survey of applications. 

1.1 Optimality in MAPF 

In this paper, we specifically address optimal MAPF in which paths that are optimal 

with respect to a given objective are searched. The two basic objectives studied in the 

literature are makespan [29] and sum-of-costs [19, 25]. 

Under the makespan objective the aim is to obtain a plan that can be executed in 

as short as possible time while each movement consumes 1 unit of time. In the terms of 

agents /paths, we need the longest path out of all the paths to be as short as possible. 

The sum-of-costs objective assumes that unit costs are assigned to actions agents 

can do where action is either a movement or a wait action. The cost of plan is the sum 

of action costs along all the paths and over all the agents. The aim is to obtain a plan 

with the minimum cost. Intuitively, the sum-of-costs objective corresponds to the en-

ergy consumed by agents when moving. 

As we will show later, there may be situations where the increase in the sum-of-

costs leads to a shorter makespan. This has practical/physical analogy where sometimes 

time can be saved at the cost of higher energy consumption. 

Finding a feasible solution of MAPF can be done in polynomial time [13, 35]. Add-

ing any of the discussed objectives renders the decision version of MAPF (that is, we 

ask a yes/no question if a given MAPF has a solution of specified makespan/sum-of-

costs) to be NP-complete [16, 28, 32]. 

We will keep the further description around the sum-of-costs variant but it is im-

portant to note that the presented techniques apply for the makespan variant as well. 
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1.2 Contributions to SAT-based MAPF 

One of successful approaches for solving MAPF optimally is to translate the decision 

version into propositional formula [10, 11]. The formula is satisfiable if and only if the 

instance of MAPF is solvable for a given value of the objective function. Assuming that 

satisfiability of such formula is a non-decreasing function of the value of objective 

function, it is easy to obtain the optimum by querying the satisfiability multiple times. 

A trivial strategy of increasing the value of objective function by one turned out to be 

the most efficient so far [30] – this is mostly because of the non-uniform difficulty of 

each query. 

Satisfiability of the formula can be decided by an off-the-shelf SAT solver [2, 6] 

which is one of the advantages of the SAT-based approach. All the advanced techniques 

developed in recent decades for SAT solving are employed for solving MAPF - SAT 

Competitions [4] refers about the progress in SAT solvers. 

The most significant bottleneck of all the existing SAT-based algorithms for MAPF 

is the large size and combinatorial difficulty of the target propositional formula that 

grow significantly with the increasing number of agents as well as with growing size 

of the underlying graph. 

This kind of growth of combinatorial difficulty has already been addressed by 

Standley [24] in his search-based optimal MAPF solving algorithm. Standley described 

various variants of a method called independence detection that tries to determine the 

smallest possible groups of agents for which paths can be found independently of other 

groups. The independence detection technique turned out to be extremely beneficial 

when integrated with an algorithm for finding paths that is exponential in the number 

of agents. This is also the case of SAT-based MAPF solving. 

Our contribution is integrating two variants of independence detection – simple in-

dependence detection (SID) and independence detection (ID) – with MDD-SAT – the 

most recent SAT-based MAPF solver [30]. As there are differences in how the original 

Standley’s search-based algorithm and SAT-based approach work we suggested mod-

ifications to ID to be compatible with the SAT-based approach. Our new solvers are 

called MDD-SAT+SID and MDD-SAT+ID following the notation of [24]. Conducted 

experiments demonstrate similar performance benefit as in the case of original applica-

tion of SID and ID. Considering that MDD-SAT has been state-of-the-art for a certain 

class of MAPF instances, the new MDD-SAT+SID and MDD-SAT+ID represents new 

progress. 

This paper is an extension of [31]. We describe in more detail the encoding of 

MAPF to a Boolean formula. In addition to [31] we also present experimental evalua-

tion of MDD-SAT+SID. 

The paper is organized as follows. After the formal introduction of the MAPF prob-

lem a brief exposition of related work is done. Then, the Boolean encoding of MAPF 

is presented, also the original SID and ID are recalled and their integration with the 

SAT-based approach is presented. Finally, an experimental evaluation with grids and 

large maps is presented.  



4 

 

2 MAPF Definition 

An arbitrary undirected graph can be used to model the environment where agents are 

moving. Let 𝐺 = (𝑉, 𝐸) be such a graph where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite set of 

vertices and 𝐸 ⊆ (𝑉
2

) is a set of edges. 

The placement of agents in the environment is modeled by assigning them vertices 

of the graph. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} be a finite set of agents. Then, an arrangement of 

agents in vertices of graph 𝐺 will be fully described by a location function 𝛼: 𝐴 ⟶ 𝑉; 

the interpretation is that an agent 𝑎 ∈ 𝐴 is located in a vertex 𝛼(𝑎). At most one agent 

can be located in each vertex; that is 𝛼 is uniquely invertible. 

 

Definition 1 (MAPF). An instance of multi-agent path-finding problem is a quadruple 

Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+] where location functions 𝛼0 and 𝛼+ define the initial and 

the goal arrangement of a set of agents 𝐴 in 𝐺 respectively. □ 

 

Fig. 1. An example of a MAPF instance from [31] with three agents 𝑎1, 𝑎2, and 𝑎3 (left). A 

solution of the instance is shown (right). 

The dynamicity of the model assumes a discrete time divided into time steps. An 

arrangement 𝛼𝑖 at the 𝑖-th time step can be transformed by a transition action which 

instantaneously moves agents in the non-colliding way to form a new arrangement 

𝛼𝑖+1. The transition between 𝛼𝑖 and 𝛼𝑖+1 must satisfy the following validity conditions: 

 

(1) ∀𝑎 ∈ 𝐴  either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸 holds 

   (agents move along edges or wait at their current location), 

(2) ∀𝑎 ∈ 𝐴  𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒ 𝛼𝑖
−1(𝛼𝑖+1(𝑎)) =⊥ 

   (agents move to vacant vertices only), and 

(3) ∀𝑎, 𝑏 ∈ 𝐴  𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏) 

(no two agents enter the same target/unique invertibility of resulting 

arrangement). 

 

The task in MAPF is to transform 𝛼0 using above valid transitions to 𝛼+. An 

illustration of MAPF and its solution is depicted in Figure 1. 
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Definition 2 (MAPF solution). A solution for MAPF instance Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] is a 

sequence of arrangements [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜇] where 𝛼𝜇 = 𝛼+ and 𝛼𝑖+1 is a result of 

valid transition from 𝛼𝑖 for every = 1,2, … , 𝜇 − 1 . □ 

 

Fig. 2. An instance of the MAPF problem from [31] in which no makespan optimal solution is 

sum-of-costs optimal and no sum-of-costs optimal solution is makespan optimal. 

 

The task in MAPF is to transform 𝛼0 using above valid transitions to 𝛼+. An 

illustration of MAPF and its solution is depicted in Figure 1. 

 

Definition 3 (MAPF solution). A solution for MAPF instance Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] is a 

sequence of arrangements [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜇] where 𝛼𝜇 = 𝛼+ and 𝛼𝑖+1 is a result of 

valid transition from 𝛼𝑖 for every = 1,2, … , 𝜇 − 1 . □ 

 

Makespan 𝜇 is the total number of time steps until the last agent reaches its 

destination. Sum-of-costs denoted 𝜉 is the sum of path costs per individual agents. Each 

action (including wait) of an agent before it reaches its goal has unit cost. 

2.1 Makespan vs. Sum-of-Costs 

There exists an instance in which all the sum-of-costs optimal solutions are not 

makespan optimal. Similarly, none of the makespan optimal solution is sum-of-costs 

optimal there (see Figure 2 for illustration). 

In the SAT-based optimal MAPF solver described below, a proper relation between 

makespan and sum-of-costs need to be found as both objectives are bounded during 

search. We need to ensure that smallest cost found under the given makespan bound is 

optimal (see [30] for more detailed discussion). 
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3 Related Work 

Many other successful algorithms exist for the optimal MAPF solving. The state-of-

the-art search-based algorithms (though there is no universal winner) include increas-

ing cost tree search - ICTS [19], conflict base search - CBS [20], and improved CBS – 

ICBS [7]. These algorithms excel in setups with relatively few agents on large maps. 

 Another research direction is represented by methods based on reduction of the 

MAPF problem to another formalism. Except the SAT as a target formalism, successful 

attempts to reduce MAPF to constraint optimization problem [18], inductive logic pro-

gramming [33], and answer set programming [9] have been made. These approaches 

(the SAT approach including) can be generally characterized by a high performance in 

MAPFs with small underlying graph densely populated with agents. This is a natural 

outcome of the maturity of solvers used to solve hard combinatorial problems in the 

target formalism. 

 Recently new research directions driven by applications have been identified in the 

MAPF context. For example, it is not always necessary to distinguish between individ-

ual agents – see [14] for detailed survey. 

4 SAT Encoding for Optimal Sum-of-Costs 

In this paper, we follow the algorithm solving sum-of-cost optimal MAPF via reduction 

to SAT presented in [30]. 

The basic approach in solving MAPF via SAT is to create a time expansion graph 

(denoted TEG) [29]. A TEG is a directed acyclic graph (DAG). First, the set of vertices 

of the underlying graph 𝐺 are duplicated for all time-steps from 0 up to the given bound 

𝜇. Then, possible actions (move along edges or wait) are represented as directed edges 

between successive time steps. Formally a TEG is defined as follows: 

 

Definition 3 (TEG). Time expansion graph of depth 𝜇 for underlying graph (𝑉, 𝐸) is a 

digraph (𝑉𝜇 , 𝐸𝜇) where 𝑉𝜇 = {𝑢𝑗
𝑡|𝑡 = 0,1, … , 𝜇 ∧ 𝑢𝑗 ∈ 𝑉} and 𝐸𝜇 = {(𝑢𝑗

𝑢, 𝑢𝑘
𝑡+1)| 

𝑡 = 0,1, … , 𝜇 − 1 ∧ ({𝑢𝑗, 𝑢𝑘} ∈ 𝐸 ∨ 𝑗 = 𝑘)}. □ 

 

The encoding for MAPF introduces propositional variables and constraints for a sin-

gle time-step 𝑡 in order to represent any possible arrangement of agents at time 𝑡. Given 

a desired makespan 𝜇, the formula represents the question of whether there is a solution 

in the TEG of 𝜇 time steps. The search for optimal makespan is done by iteratively 

incrementing 𝜇 (= 0,1,2 … ) until a satisfiable formula is obtained. 

To find the optimal sum-of-costs solution, we use similar technique as with optimal 

makespan solution. The sequence of decision problems is whether there exists a solu-

tion of a given sum-of-cost 𝜉. However, encoding this decision problem is more chal-

lenging than the makespan case, because one needs to both bound the sum-of-costs, but 

also to predict how many time expansions are needed. We address this challenge by 

using two key techniques described next: (1) Cardinality constraint for bounding 𝜉 and 

(2) Bounding the Makespan. 
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4.1 Cardinality Constraint for Bounding 𝝃 

The SAT literature offers a technique for encoding a cardinality constraint [3, 21], 

which allows calculating and bounding a numeric cost within the formula. Formally, 

for a bound 𝜆 ∈ ℕ and a set of propositional variables 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘} the cardinal-

ity constraint ≤𝜆 {𝑥1, 𝑥2, … , 𝑥𝑘} is satisfied iff the number of variables from the set 𝑋 

that are set to TRUE is ≤ 𝜆. 

In our SAT encoding, we bound the sum-of-costs by mapping every agent’s action 

to a propositional variable, and then encoding a cardinality constraint on these varia-

bles. Thus, one can use the general structure of the makespan SAT encoding (which 

iterates over possible makespans), and add such a cardinality constraint on top. 

4.2 Bounding the Makespan for the Sum of Costs 

We compute how many time expansions (𝜇) are needed to guarantee that if a solution 

with sum-of-costs 𝜉 exists then it will be found. In other words, in our encoding, the 

values we give to 𝜉 and 𝜇 must fulfill the following requirement: 

R1: all possible solutions with sum-of-costs 𝜉 must be possible for a makespan of at 

most 𝜇. 

To find a 𝜇 value that meets R1, we require the following definitions. Let 𝜉0(𝑎𝑖) be 

the cost of the shortest individual path for agent 𝑎𝑖, and let 𝜉0 = ∑ 𝜉0(𝑎𝑖)𝑎𝑡∈𝐴 . 𝜉0 was 

called the sum of individual costs (SIC) [19]. 𝜉0 is an admissible heuristic for optimal 

sum-of-costs search algorithms, since 𝜉0 is a lower bound on the minimal sum-of-costs. 

𝜉0 is calculated by relaxing the problem by omitting the other agents. Similarly, we 

define 𝜇0 = max
𝑎𝑡∈𝐴

𝜉0(𝑎𝑖). 𝜇0 is length of the longest of the shortest individual paths and 

is thus a lower bound on the minimal makespan. Finally, let Δ be the extra cost over 

SIC (as done in [19]). That is, let Δ = 𝜉 − 𝜉0. 

 

Proposition 1 For makespan 𝜇 of any solution with sum-of-costs 𝜉, R1 holds for 𝜇 ≤
𝜇0 + 𝛥. 

 

Proof outline: The worst-case scenario, in terms of makespan, is that all the Δ extra 

moves belong to a single agent. Given this scenario, in the worst case, Δ is assigned to 

the agent with the largest shortest path. Thus, the resulting path of that agent would be 

𝜇0 + Δ, as required. □ 

 

Using Proposition 1, we can safely encode the decision problem of whether there is 

a solution with sum-of-costs 𝜉 by using 𝜇 = 𝜇0 + Δ time expansions, knowing that if a 

solution of cost 𝜉 exists then it will be found within 𝜇 = 𝜇0 + Δ time expansions. In 

other words, Proposition 1 shows relation of both parameters 𝜇 and 𝜉 which will be 

both changed by changing Δ. Algorithm 1 summarizes our optimal sum-of-costs algo-

rithm. In every iteration, 𝜇 is set to 𝜇0 + Δ and the relevant TEGs (described below) for 

the various agents are built. Next a decision problem asking whether there is a solution 
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with sum-of-costs 𝜉 and makespan 𝜇 is queried. The first iteration starts with Δ =  0. 

If such solution exists, it is returned. Otherwise 𝜉 is incremented by one, Δ and conse-

quently 𝜇 are modified accordingly and another iteration of SAT consulting is activated. 

 

Algorithm 1. SAT consult illustrating the increase in Δ 

MAPF-SAT (MAPF Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+)) 

 𝜇0 = max
𝑎𝑡∈𝐴

𝜉0(𝑎𝑖), Δ = 0 

 while Solution not found do 

  𝜇 = 𝜇0 + Δ 
  for each agent 𝑎𝑖 do 

   Build TEGi(𝜇) 
  end 

  Solution = Consult-SAT-Solver(Σ, 𝜇, Δ) 
  if Solution not found then 

   Δ + + 
  end 

 end 

 return (Solution) 

end 

 

This algorithm clearly terminates for solvable MAPF instances as we start seeking a 

solution of 𝜉 = 𝜉0(Δ = 0) and increment  Δ (which increments 𝜉 and 𝜇 as well) to all 

possible values. The unsolvability of an MAPF instance can be checked separately by 

a polynomial-time complete sub-optimal algorithm such as PUSH-AND-ROTATE [35]. 

4.3 Efficient Use of the Cardinality Constraint 

The complexity of encoding a cardinality constraint depends linearly in the number of 

constrained variables [21, 23]. Since each agent 𝑎𝑖 must move at least 𝜉0(𝑎𝑖), we can 

reduce the number of variables counted by the cardinality constraint by only counting 

the variables corresponding to extra movements over the first 𝜉0(𝑎𝑖) movement 𝑎𝑖 

makes. We implement this by introducing a TEG for a given agent 𝑎𝑖 (labeled TEGi). 

TEGi differs from TEG (Definition 3) in that it distinguishes between two types of 

edges: 𝐸𝑖 and 𝐹𝑖. 𝐸𝑖 are (directed) edges whose destination is at time step ≤ 𝜉0(𝑎𝑖). 

These are called standard edges. 𝐹𝑖 denoted as extra edges are directed edges whose 

destination is at time step ≥ 𝜉0(𝑎𝑖). Figure 3 shows an underlying graph for agent 𝑎1 

(left) and the corresponding TEG1. Note that the optimal solution of cost 2 is denoted 

by the diagonal path of the TEG. Edges that belong to 𝐹𝑖 are those that their destination 

is time step 3 (dotted lines). The key in this definition is that the cardinality constraint 

would only be applied to the extra edges, that is, we will only bound the number of 

extra edges (they sum up to Δ) making it more efficient. There are various possibilities 

to define what happens to an agent when it reaches the goal (disappears, waits etc.). In 
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all cases, edges in TEGs corresponding to wait actions at the goal are not marked as 

extra. Importantly, our SAT approach is robust across all these variants. 

 

Fig. 3. A TEG for an agent that needs to go from 𝑢1 to 𝑢3. 

4.4 Detailed Description of the SAT Encoding 

Agent 𝑎𝑖 must go from its initial position to its goal within TEGi. This simulates its 

location in time in the underlying graph 𝐺. That is, the task is to find a path from 𝑎0
0(𝑎𝑖) 

to 𝑎+
𝜇(𝑎𝑖) in TEGi. The search for such a path will be encoded within the Boolean for-

mula. Additional constraints will be added to capture all movement constraints such as 

collision avoidance etc. And, of course, we will encode the cardinality constraint that 

the number of extra edges must be exactly 𝛥. 

We want to ask whether a sum-of-costs solution of 𝜉 exists. For this we build TEGi 

for each agent 𝑎𝑖 ∈ 𝐴 of depth 𝜇0 + Δ. We use 𝑉𝑖 to denote the set of vertices in TEGi 

that agent 𝑎𝑖 might occupy during the time steps. Next we introduce the Boolean en-

coding (denoted BASIC-SAT) which has the following Boolean variables:  

1. χ𝑗
𝑡(𝑎𝑖) for every 𝑡 ∈ {0,1, … , 𝜇} and 𝑢𝑗

𝑡 ∈ 𝑉𝑖  – Boolean variable of whether agent 𝑎𝑖 

is in vertex 𝑣𝑗 at time step 𝑡. 

2. ℰ𝑗,𝑘
𝑡 (𝑎𝑖) for every 𝑡 ∈ {0,1, … , 𝜇 − 1} and (𝑢𝑗

𝑡 , 𝑢𝑘
𝑡+1) ∈ (𝐸𝑖 ∪ 𝐹𝑖) – Boolean variable 

that model transition of agent 𝑎𝑖 from vertex 𝑣𝑗 to 𝑣𝑘 through any edge (standard or 

extra) between time steps 𝑡 and 𝑡 + 1 respectively. 

3. ∁𝑡(𝑎𝑖) for every 𝑡 ∈ {0,1, … , 𝜇 − 1} such that there exist 𝑢𝑗
𝑡 ∈ 𝑉𝑖 and 𝑢𝑘

𝑡+1 ∈ 𝑉𝑖 with 

(𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ 𝐹𝑖  – Boolean variables that model cost of movements along extra edges 

(from 𝐹𝑖) between time steps 𝑡 and 𝑡 + 1. 

We now introduce constraints on these variables to restrict illegal values as defined 

by our variant of MAPF. Other variants may use a slightly different encoding but the 

principle is the same. Let 𝑇𝜇 = {0,1, … , 𝜇 − 1}. Several groups of constraints are intro-

duced for each agent 𝑎𝑖 ∈ 𝐴 as follows: 
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C1: If an agent appears in a vertex at a given time step, then it must follow through 

exactly one adjacent edge into the next time step. This is encoded by the following 

two constraints, which are posted for every 𝑡 ∈ 𝑇𝜇 and 𝑢𝑗
𝑡 ∈ 𝑉𝑖. 

 χ𝑗
𝑡(𝑎𝑖) ⇒ ⋁ ℰ𝑗,𝑘

𝑡 (𝑎𝑖)(𝑢𝑗
𝑡,𝑢𝑘

𝑡+1)∈(𝐸𝑖∪𝐹𝑖)  (1) 

 ⋀ ¬ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ∨ ¬ℰ𝑗,𝑙

𝑡 (𝑎𝑖)(𝑢𝑗
𝑡,𝑢𝑘

𝑡+1),(𝑢𝑗
𝑡,𝑢𝑙

𝑡+1)∈(𝐸𝑖∪𝐹𝑖)∧𝑘<𝑙  (2) 

 

C2: Whenever an agent occupies an edge it must also enter it before and leave it at the 

next time-step. This is ensured by the following constraint introduced for every 

𝑡 ∈ 𝑇𝜇 and (𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ (𝐸𝑖 ∪ 𝐹𝑖). 

 ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ⇒ χ𝑗

𝑡(𝑎𝑖) ∧ χ𝑘
𝑡+1(𝑎𝑖) (3) 

C3: The target vertex of any movement except wait action must be empty. This is 

ensured by the following constraint introduced for every 𝑡 ∈ 𝑇𝜇 and (𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈

(𝐸𝑖 ∪ 𝐹𝑖) such that 𝑗 ≠ 𝑘. 

 ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ⇒ ⋀ χ𝑘

𝑡+1(𝑎𝑙)𝑎𝑙∈𝐴∧𝑎𝑙≠𝑎𝑖∧𝑢𝑘
𝑡+1∈𝑉𝑙

 (4) 

C4: No two agents can appear in the same vertex at the same time step (although the 

previous constraint ensures that an agent does not collide with an agent currently 

residing in a vertex it does not prevent simultaneous entering of the same vertex 

by multiple agents). That is the following constraint is added for every 𝑡 ∈ 𝑇𝜇 and 

pair of agents 𝑎𝑖 , 𝑎𝑙 ∈ 𝐴 such that 𝑖 ≠ 𝑙. 

 ⋀ ¬χ𝑗
𝑡 (𝑎𝑖) ∨ ¬𝑢𝑗

𝑡∈𝑉𝑖∩𝑉𝑙
χ𝑗

𝑡 (𝑎𝑙) (5) 

C5: Whenever an extra edge is traversed the cost needs to be accumulated. In fact, this 

is the only cost that we accumulate as discussed above. This is done by the fol-

lowing constraint for every 𝑡 ∈ 𝑇𝜇 and extra edge (𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ 𝐹𝑖 . 

 ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ⇒ ∁𝑡(𝑎𝑖) (6) 

C6: Cardinality constraint. Finally, the bound on the total cost needs to be intro-

duced. Reaching the sum-of-costs of 𝜉 corresponds to traversing exactly Δ extra 

edges from 𝐹𝑖. The following cardinality constrains ensures this: 

 ≤Δ {∁𝑡(𝑎𝑖)|𝑖 = 1,2, … , 𝑛 ∧ 𝑡 = 0,1, … 𝜇 − 1 ∧ {(𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ 𝐹𝑖} ≠ ∅} (7) 

The resulting Boolean formula that is a conjunction of C1 … C7 will be denoted as 

ℱ𝐵𝐴𝑆𝐼𝐶(Σ, 𝜇, Δ) and is the one that is consulted by Algorithm 1. 

The following proposition summarizes the correctness of our encoding. 

 

Proposition 2 MAPF Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+) has a sum-of-costs solution of 𝜉 if 

and only if ℱ𝐵𝐴𝑆𝐼𝐶 (Σ, 𝜇, Δ) is satisfiable. Moreover, a solution of MAPF Σ with the sum-
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of-costs of 𝜉 can be extracted from the satisfying valuation of ℱ𝐵𝐴𝑆𝐼𝐶(Σ, 𝜇, Δ) by reading 

its χ𝑗
𝑡(𝑎𝑖) variables. 

 

Proof: The direct consequence of the above definitions is that a valid solution of a 

given MAPF Σ corresponds to non-conflicting paths in the TEGs of the individual 

agents. These non-conflicting paths further correspond to satisfying the variable assign-

ment of ℱ𝐵𝐴𝑆𝐼𝐶(Σ, 𝜇, Δ), i.e., that there are Δ extra edges in TEGs of depth 𝜇 =  𝜇0 +
Δ. □ 

 

As discussed in [30], the limitation of BASIC-SAT encoding is its size which is 

implied by the size of the time expanded graph. To mitigate this limitation Surynek et 

al. took inspiration from another successful search-based solver called increasing cost 

tree search (ICTS) [19]. Vertices whose sum of distances from 𝑎0
0(𝑎𝑖) and 𝑎+

𝜇(𝑎𝑖) in 

TEGi is greater than 𝜇 can never be visited by 𝑎𝑖 in any optimal solution or else 𝑎𝑖 

would not have enough time steps to reach 𝑎+
𝜇(𝑎𝑖). Omitting those vertices from TEGs 

that are too far in the aforementioned sense would not compromise soundness of the 

solving process but would lead to a smaller formula. In [30], this version of TEGs where 

unreachable vertices are omitted is called MDD and corresponding formula is denoted 

as ℱ𝑀𝐷𝐷(Σ, 𝜇, Δ). When referring to MDD-SAT solver we assume the version with 

MDDs. 

Using MDDs can rule out many vertices that would be normally considered in 

standard time expansions. Experiments confirmed that MDDs enabled using the SAT-

based approach even for large MAPF instances for which the size of encodings without 

MDD was prohibitive. 

 

5 Independence Detection 

Our major aim is to increase performance of the SAT-based MAPF solver by reducing 

the number of agents needs to be considered at once. This has been successfully done 

in search based methods via a technique called independence detection. 

In this section, we will describe the original method of independence detection pro-

posed by Standley (2010). The main idea behind this technique is that difficulty of 

MAPF solving optimally grows exponentially with the number of agents. It would be 

ideal, if we could divide the problem into a series of smaller sub problems, solve them 

independently at low computational effort, and then combine them. 

The simple approach, called simple independence detection (SID), assigns each 

agent to a group so that every group consists of exactly one agent. Then, for each of 

these groups, an optimal solution is found independently. Every pair of these solutions 

is evaluated and if the two groups’ solutions are in conflict (that is, when collision of 

agents belonging to different group occurs), the groups are merged and replanned to-

gether. If there are no conflicting solutions, the solutions can be merged to a single 

solution of the original problem. This approach can be further improved by avoiding 

merging of groups. 
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Fig. 4. A schematic illustration from [31] of path replanning within the independence detection 

technique. A path for the group 𝐺1 conflicted with paths of other two groups (left part). Then 

path for 𝐺1 has been successfully replanned (right part). 

 

Algorithm 2. MAPF solving algorithm based on independence detection (ID) technique. Plan-

ning for groups is always done to have least number of conflicts w.r.t. conflict avoidance table.  

 

assign each agent to a group; 

plan a path for each group by A*; 

fill conflict avoidance table; 

while conflicting groups exist 

G1, G2 = conflicting groups; 

if G1, G2 not conflicted before 

 replan G1 by A* with illegal moves based on G2; 

if failed to replan G1 

 replan G2 by A* with illegal moves based on G1; 

endif 

endif 

if no alternate paths for G1, G2  

merge G1 and G2; 

plan a path for new group by A*; 

endif 

update conflict avoidance table; 

end 

return combined paths of all groups; 

 

vertices 

time 

u2 u1 u3 u4 u5 u
2
 u1 u
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Generally, each agent has more than one possible optimal path. However, SID con-

siders only one of these paths. The improvement of SID known as independence detec-

tion (ID) is as follows. Let’s have two conflicting groups 𝐺1 and 𝐺2. First, try to replan 

𝐺1 so that the new solution has the same cost and the steps that are in conflict with 𝐺2 

are forbidden. 

If no such solution is possible, try to similarly replan 𝐺2. If this is not possible, merge 

𝐺1 and 𝐺2 into a new group. In case either of the replanning was successful, that group 

needs to be evaluated with every other group again. This can lead to infinite cycle. 

Therefore, if two groups were already in conflict before, merge them without trying to 

replan.  

Standley uses ID in combination with the A* algorithm. While planning, it is pre-

ferred to find paths that create the least possible amount of conflicts with other groups 

that have already planned paths. For this purpose, the conflict avoidance table is created 

(see Algorithm 2 for pseudo-code). 

The table stores moves of agents in other groups. In case A* has a choice between 

several nodes with the same minimal 𝑓() cost, the one with least amount of conflicts is 

expanded first. This technique yields an optimal solution that has a minimal number of 

conflicts with other groups. This property is useful when replanning of a group’s solu-

tion is needed. 

Both SID and ID do not solve MAPF on their own, they only divide the problem 

into smaller sub-problems that are solved by any possible MAPF algorithms. Thus, ID 

and SID are general frameworks which can be executed on top of any MAPF solver. 

6 Integrating SID and ID into MDD-SAT 

SID can be integrated into the SAT-based framework as a top-level algorithm where 

MDD-SAT merely serves as a procedure for optimal MAPF solving restricted on an 

individual group. Hence, no modification of the core MDD-SAT procedure is needed. 

ID however requires modification of the original ID since in the propositional for-

mula it is not possible to express preference that individual paths of groups of agents 

should avoid occupied positions in the conflict avoidance table. In the yes/no SAT en-

vironment we either manage to avoid occupied positions or not while in the negative 

case there is no easy tool how to control the number of conflicts. 

 The SAT-based version of ID works in similar way to the original version of Stand-

ley but instead of resolving conflicts between a pair of conflicting groups 𝐺1 and 𝐺2 it 

resolves conflict of group 𝐺1 with all other groups. If this attempt is successful, 𝐺1 is 

independent on others and the process can continue with resolving conflicts between 

remaining groups (see Figure 4 where 𝐺1 has been made independent). 

If the attempt to resolve conflict between 𝐺1 and 𝐺2 by making 𝐺1 independent fails, 

the same is tried for 𝐺2. If the attempt for 𝐺2 fails too groups are merged. The pseudo-

code is shown as Algorithm 3. 

In contrast to original ID we strictly require avoidance with respect to the conflict 

avoidance table instead of stating it as a preference only. This is technically done by 

omitting the conflicting vertices in the MDD. The SAT approach does not allow to 

express a preference like in the search based algorithm. This is the reason why ID in 

the SAT-based solver differs from the original one. 
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Algorithm 3. Independence detection in the SAT-based framework. Conflict aviodance is 

strictly required. 

assign each agent to a group; 

plan a path for each group G1,…,Gk by MDD-SAT; 

fill conflict avoidance table; 

while conflicting groups exist 

G1, G2 = conflicting groups; 

if G1, G2 not conflicted before 

replan G1 by MDD-SAT with illegal moves based on 

{G1,…,Gk}-G1; 

if failed to replan G1 

replan G2 by MDD-SAT with illegal moves based on 

{G1,…,Gk}-G2; 

endif 

endif 

if no alternate paths for G1, G2  

merge G1 and G2; 

plan a path for new group by MDD-SAT; 

endif 

update conflict avoidance table; 

end 

return combined paths of all groups; 

 

7 Experiments 

We performed experimental comparison of the proposed MDD-SAT+SID and MDD-

SAT+ID solvers with other state-of-the-art solvers – namely with the previous best 

SAT-based solver MDD-SAT and also with search-based algorithms ICTS and ICBS. 

 The MDD-SAT+SID and MDD-SAT+ID have been implemented in C++ as an ex-

tension of an existing implementation of the MDD-SAT solver. A couple of minor im-

provements have been done in the original MDD-SAT encoding – some auxiliary prop-

ositional variables have been eliminated which reduced the size of the encoding and 

consequently saved runtime while generating formulae (this improvement affects both 

MDD-SAT and new MDD-SAT+SID, MDD-SAT+ID used in presented experiments). 

 We used Glucose 3.0 [1] in variants of MDD-SAT which is a top performing 

SAT solver according to the recent SAT Competitions [4]. The complete implementa-

tion of the MDD-SAT solvers is available on-line to allow reproducibility of the pre-

sented results: http://ktiml.mff.cuni.cz/~surynek/research/icaart2017. 

 ICTS and ICBS have been implemented in C#. The original implementations of 

these algorithms have been used. 

 All the tests were run on Xeon 2Ghz, and on Phenom II 3.6Ghz, both with 12 Gb of 

memory. 

 The experimental setup followed the scheme used in the literature [22] which tests 

MAPF algorithms on 4-connected grids. Let us note however that all the suggested 

http://ktiml.mff.cuni.cz/~surynek/research/icaart2017
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algorithms are designed and implemented for general undirected graphs (the fact that 

grids are used in the experiments is not exploited to increase efficiency of solving in 

any way). 

7.1 Small Grids Evaluation 

The first series of experiments takes place on small square grids of sizes 8×8, 16×16, 

and 32×32 with 10% of vertices occupied by obstacles. In this setup of the environ-

ment, we increased population of agents from 1 and observed the runtime of all the 

solvers until no solver was able to solve the instance within the given time limit of 300 

seconds (this was 20 agents for 8×8 grid, and 40 and 60 for 16×16 and 32×32 girds 

respectively). 

 

 
Fig. 5. Results of experiments on small grid maps of sizes 8×8, 16×16, and 32×32. Figures 

show how many instances were solved within the given runtime and sorted runtimes (right bot-

tom part). Clearly versions of MDD-SAT dominate in the test over search based algorithms ICTS 

and ICBS except few quickly solvable cases. Moreover, MDD-SAT+ID and MDD-SAT+SID 

outperforms MDD-SAT in cases with low to medium density of agents. MDD-SAT+ID and 

MDD-SAT+SID exhibit similar performance while ID shows its advantage in instances requiring 

more time. 
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Ten randomly generated instances per number of agents were used. The initial po-

sitions were generated by choosing a subset of vertices randomly. The goal arrangement 

has been generated as a long random walk from the initial state following valid moves 

– this ensured solvability of all the tested instances. 

To be able to communicate results of experiments more easily we intuitively distin-

guish three different categories of instances with respect to the density of agents as 

follows. The behavior of solvers is then discussed with respect to these categories: 

▪ Low density – few interactions among agents, paths for individual agents can be 

planned independently. 

▪ Medium density – some interaction among agents are inevitable but there exist 

multiple groups of agents that are independent of each other. 

▪ High density – majority of agents are interdependent and form one large group. 

The small grid experiment contains instances from all these three cases. The hy-

pothesis is that the SID and ID technique will be helpful in instances with medium 

density of agents while ID is expected to reach benefit in higher densities of agents. We 

also expect that in the case of low density of agents there will be some benefit of SID 

and ID since many agents will just follow their shortest paths towards goals in such a 

case. As in low and medium density cases the complexity of the formula is not propor-

tional to the difficulty of the instance. 

Furthermore, we expect rather negative effect of using SID and ID in instances with 

high density of agents. This is because of the fact that most agents will be gradually 

merged into a large group while the process of merging represents an overhead in such 

a case. 

Experimental result for the small grids (see Figure 5) confirmed the hypothesis. 

MDD-SAT+SID/ID win in low to medium density of agents. For the higher density of 

agents, both MDD-SAT+SID/ID tend to be eventually outperformed by the original 

MDD-SAT. If SID and ID are compared then we can see that ID has more significant 

benefit than SID in most cases. 

7.2 Large Maps – Dragon Age 

We also experimented on three structurally different large maps from Dragon Age: Or-

igins [26] – ost003d, den520d, and brc202d (see Figure 5). Our choice of maps 

is driven by the choice of authors in the previous literature [20, 30]. 

 

Fig. 6. Illustration of large Dragon Age maps ost003d (size 194×194), den520d (size 

257×256), and brc202d (size 481×530). 

 

ost003d den520d brc202d 
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We used setup with 16 and 32 agents randomly paced agents which represents low 

to medium density. Let us note that a case with high density of agents in the map of that 

size is currently out of reach of any existing algorithm. 

  

Fig. 7. Results of experiments on Dragon Age map ost003d. MDD-SAT+ID outperforms 

MDD-SAT in harder instances while MDD-SAT+SID performs worse than MDD-SAT. All 

MDD-SAT versions are dominated by ICTS. 

 

 To obtain problems of various difficulties the distance of agents from initial posi-

tions to their goals has been varied in the range 8, 16, 24, …, 320.  

 

  
Fig. 8. Results of experiments on Dragon Age map den520d. ID brings minor benefit in harder 

instances while SID has merely a negative effect. 

 

For each distance 10 random instances were generated in which initial positions were 

selected randomly and then random walk has been performed until all the agents reach 

at least the given distance from its initial position. 

The hypothesis for large maps is that MDD-SAT+SID/ID should dominate gener-

ally with some expected advantage of ID which in fact is the same hypothesis as in the 

case of small grids because here we have only the low-medium density case. However, 
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as there are important structural differences between the three tested maps which impact 

is hardly predictable. Intuitively, SID/ID should have been more beneficial in 

ost003d and den520d maps since in these maps there is more room to find alterna-

tive paths. 

Results for the three Dragon Age maps are shown in figures 7, 8, and 9. Again the 

number of instances solved in the given runtime is shown. The difficulty (runtime) 

grows with the growing distance of agents from their goals in this setup. 

It can be read from these results that MDD-SAT+ID tends to outperform MDD-

SAT in more difficult instances. In these instances, the interaction among agents in non-

trivial but on the other hand the interdependence among agents is tractable by ID. 

Surprising results have been obtained for MDD-SAT+SID which performed gener-

ally worse than MDD-SAT. SID hence was unsuccessful in independence detection 

enough to produce any performance benefit in MDD-SAT expect the case of very easy 

instances.  

The intuitive hypothesis was not confirmed completely since surprisingly MDD-

SAT is better than MDD-SAT+ID in easier instances of medium density category usu-

ally and the performance of MDD-SAT+SID remained behind expectation. Our initial 

intuitive hypothesis did estimate well the effort needed for merging groups that even-

tually represents a big overhead in case of large maps. Hence, MDD-SAT+ID can show 

its benefit after the difficulty of the formula representing the entire MAPF instance 

prevails over the difficulty of group merging. 

Another surprising result was obtained in brc202d map where MDD-SAT+ID was 

a very clear winner in harder instances with 32 agents. 

Moreover, we cannot say that SAT-based approach represented by MDD-SAT and 

MDD-SAT+SID/ID is a universal winner as there are cases where ICTS and ICBS 

dominate (ost003d with 32 agents is such an example).  

7.3 Discussion 

It can be generally observed that ID brings worthwhile improvement to MDD-SAT 

solver which by itself performs very well. The simple version of independence detec-

tion SID provides worse benefit than ID and in large instances its effect is even nega-

tive. 

Experimental results indicate that there is a certain range of the density of agents 

though not precisely determined in our evaluation in which ID is beneficial while out-

side this range it cases an overhead. 

 The implementation of ID within the MDD-SAT+ID solver did not use any special 

reasoning about what groups of agents should be merged or not. The groups were pro-

cessed in the ordering given by the original ordering of agents. We expect that more 

careful reasoning about merging can bring yet more improvements. 

8 Conclusion 

We described how to integrate existing technique of independence detection (ID) and 

simple ID (SID) developed originally for search-based MAPF solver into the SAT-

based approach to MAPF. 
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 Experimental results confirm significant benefit of using ID within the SAT-based 

approach to optimal MAPF solving. The benefit is especially evident in instances with 

medium density of agents where interactions among agents are non-trivial but there 

exist group of agents that are independent of each other.  

The suggested MDD-SAT+ID solver which is the result of integration of ID into an 

existing SAT-based MAPF solver MDD-SAT became a new state-of-the-art in optimal 

SAT-based MAPF solving. Moreover, the new MDD-SAT+ID performs well with re-

spect to best search based solvers ICTS and ICBS though we cannot say there is a uni-

versal winner. 

 There are important future research directions which we just touched in this work. 

First, the performed experimental evaluation indicates the need to develop concepts for 

more precise classification of density and interaction among agents. Such a classifica-

tion should ultimately lead to determining automatically in which cases ID would be 

beneficial and in which cases not. 

 

  
Fig. 9. Results of experiments on Dragon Age map brc202d. ID brings significant improve-

ment in harder instances with 32 agents. SID again has rather a negative effect in MDD-SAT. 

 

The second future direction would become very apparent after a close look at the 

implementation. Currently we take groups of agents to be merged in the same order as 

they appear in the input. A more informed consideration which groups of agents should 

be merged may bring further reduction of the size of groups of agents. 
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