
Variants of Independence Detection in SAT-based

Optimal Multi-Agent Path Finding

Pavel Surynek1 Jiří Švancara2 Ariel Felner3 Eli Boyarski4

1National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
2Faculty of Mathematics and Physics, Charles University, Prague, Czechia

3Ben Gurion University, Beer-Sheva, Israel
4Bar-Ilan University, Ramat-Gan, Israel

pavel.surynek@aist.go.jp, jiri.svancara@mff.cuni.cz,

felner@bgu.ac.il, eli.boyarski@gmail.com

Abstract. The problem of optimal multi-agent path finding (MAPF) is addressed

in this paper. The task is to find optimal paths for mobile agents where each of

them need to reach a unique goal position from the given start with respect to the

given cost function. Agents must not collide with each other which is a source of

combinatorial difficulty of the problem. An abstraction of the problem where dis-

crete agents move in an undirected graph is usually adopted in the literature. Spe-

cifically, it is shown in this paper how to integrate two variants of independence

detection technique developed for search based MAPF solving into a compila-

tion-based technique that translates the instance of the MAPF problem into prop-

ositional satisfiability formalism (SAT). The independence detection technique

allows decomposition of the instance consisting of a given number of agents into

instances consisting of small groups of agents with no interaction across groups.

These small instances can be solved independently and the solution of the origi-

nal instance is combined from small solutions eventually. The reduction of the

size of instances translated to the target SAT formalism has a significant impact

on performance as shown in the presented experimental evaluation. The new

solver integrating SAT translation and a more advanced variant of independence

detection is shown to be state-of-the-art in its class for optimal MAPF solving.

Keywords: Multi-agent path-finding (MAPF), independence detection (ID),

propositional satisfiability (SAT), cost optimality, makespan optimality, sum-

of-costs optimality, SAT encodings, path-finding on grids

1 Introduction

Multi-agent path finding (MAPF) is the task is of finding collision free paths for a set

of mobile agents so that each agent can reach its goal position from given start by fol-

lowing its path [13, 19, 22, 27]. The MAPF problem recently attracted considerable

attention from the research community and many concepts and techniques have been

devised to address this problem.

An abstraction in which an environment with agents is represented by undirected

graph is used in the literature [17, 36]. Agents in this abstraction are items placed in

mailto:eli.boyarski@gmail.com

2

vertices of the graph. Edges represent passable regions. Physical space occupancy of

agents is represented by the restriction that at most one agent can be placed in each

vertex. The time is discrete which means that agents can do a single move in a time

step.

Various movement schemes exist for this MAPF abstraction graph. Usually an

agent can move into an unoccupied neighbor vertex not entered by another agent at the

same time – this will be called move-to-unoccupied variant. Obviously, this variant re-

quires at least one vertex in the graph unoccupied to be able to perform some move-

ments at all.

But other variants like chain movement of agents where a chain of agents moves all

at once with only the leader entering the unoccupied vertex exist [28]. Even cases with

no unoccupied vertex in the graph were described in the literature [32]. These usually

allow movements of agents by rotating them along non-trivial cycles in graph (that is,

cycles containing at least 3 vertices. Otherwise, allowing rotation over a trivial cycle

consisting of a single edge would simplify the problem to a practically less useful var-

iant, as arbitrary swaps of pairs of agents would then be possible).

The techniques shown in this paper are generic across all these variants although

we base our presentation just on the basic variant move-to-unoccupied.

The MAPF problem and its variants are strongly practically motivated. Applications

range from navigation of multiple mobile robots [5, 8], through traffic optimization [12,

15], to movement planning in computer games [34]. We refer the reader to various

studies such as [19, 20] for the detailed survey of applications.

1.1 Optimality in MAPF

In this paper, we specifically address optimal MAPF in which paths that are optimal

with respect to a given objective are searched. The two basic objectives studied in the

literature are makespan [29] and sum-of-costs [19, 25].

Under the makespan objective the aim is to obtain a plan that can be executed in

as short as possible time while each movement consumes 1 unit of time. In the terms of

agents /paths, we need the longest path out of all the paths to be as short as possible.

The sum-of-costs objective assumes that unit costs are assigned to actions agents

can do where action is either a movement or a wait action. The cost of plan is the sum

of action costs along all the paths and over all the agents. The aim is to obtain a plan

with the minimum cost. Intuitively, the sum-of-costs objective corresponds to the en-

ergy consumed by agents when moving.

As we will show later, there may be situations where the increase in the sum-of-

costs leads to a shorter makespan. This has practical/physical analogy where sometimes

time can be saved at the cost of higher energy consumption.

Finding a feasible solution of MAPF can be done in polynomial time [13, 35]. Add-

ing any of the discussed objectives renders the decision version of MAPF (that is, we

ask a yes/no question if a given MAPF has a solution of specified makespan/sum-of-

costs) to be NP-complete [16, 28, 32].

We will keep the further description around the sum-of-costs variant but it is im-

portant to note that the presented techniques apply for the makespan variant as well.

3

1.2 Contributions to SAT-based MAPF

One of successful approaches for solving MAPF optimally is to translate the decision

version into propositional formula [10, 11]. The formula is satisfiable if and only if the

instance of MAPF is solvable for a given value of the objective function. Assuming that

satisfiability of such formula is a non-decreasing function of the value of objective

function, it is easy to obtain the optimum by querying the satisfiability multiple times.

A trivial strategy of increasing the value of objective function by one turned out to be

the most efficient so far [30] – this is mostly because of the non-uniform difficulty of

each query.

Satisfiability of the formula can be decided by an off-the-shelf SAT solver [2, 6]

which is one of the advantages of the SAT-based approach. All the advanced techniques

developed in recent decades for SAT solving are employed for solving MAPF - SAT

Competitions [4] refers about the progress in SAT solvers.

The most significant bottleneck of all the existing SAT-based algorithms for MAPF

is the large size and combinatorial difficulty of the target propositional formula that

grow significantly with the increasing number of agents as well as with growing size

of the underlying graph.

This kind of growth of combinatorial difficulty has already been addressed by

Standley [24] in his search-based optimal MAPF solving algorithm. Standley described

various variants of a method called independence detection that tries to determine the

smallest possible groups of agents for which paths can be found independently of other

groups. The independence detection technique turned out to be extremely beneficial

when integrated with an algorithm for finding paths that is exponential in the number

of agents. This is also the case of SAT-based MAPF solving.

Our contribution is integrating two variants of independence detection – simple in-

dependence detection (SID) and independence detection (ID) – with MDD-SAT – the

most recent SAT-based MAPF solver [30]. As there are differences in how the original

Standley’s search-based algorithm and SAT-based approach work we suggested mod-

ifications to ID to be compatible with the SAT-based approach. Our new solvers are

called MDD-SAT+SID and MDD-SAT+ID following the notation of [24]. Conducted

experiments demonstrate similar performance benefit as in the case of original applica-

tion of SID and ID. Considering that MDD-SAT has been state-of-the-art for a certain

class of MAPF instances, the new MDD-SAT+SID and MDD-SAT+ID represents new

progress.

This paper is an extension of [31]. We describe in more detail the encoding of

MAPF to a Boolean formula. In addition to [31] we also present experimental evalua-

tion of MDD-SAT+SID.

The paper is organized as follows. After the formal introduction of the MAPF prob-

lem a brief exposition of related work is done. Then, the Boolean encoding of MAPF

is presented, also the original SID and ID are recalled and their integration with the

SAT-based approach is presented. Finally, an experimental evaluation with grids and

large maps is presented.

4

2 MAPF Definition

An arbitrary undirected graph can be used to model the environment where agents are

moving. Let 𝐺 = (𝑉, 𝐸) be such a graph where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite set of

vertices and 𝐸 ⊆ (𝑉
2

) is a set of edges.

The placement of agents in the environment is modeled by assigning them vertices

of the graph. Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑚} be a finite set of agents. Then, an arrangement of

agents in vertices of graph 𝐺 will be fully described by a location function 𝛼: 𝐴 ⟶ 𝑉;

the interpretation is that an agent 𝑎 ∈ 𝐴 is located in a vertex 𝛼(𝑎). At most one agent

can be located in each vertex; that is 𝛼 is uniquely invertible.

Definition 1 (MAPF). An instance of multi-agent path-finding problem is a quadruple

Σ = [𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+] where location functions 𝛼0 and 𝛼+ define the initial and

the goal arrangement of a set of agents 𝐴 in 𝐺 respectively. □

Fig. 1. An example of a MAPF instance from [31] with three agents 𝑎1, 𝑎2, and 𝑎3 (left). A

solution of the instance is shown (right).

The dynamicity of the model assumes a discrete time divided into time steps. An

arrangement 𝛼𝑖 at the 𝑖-th time step can be transformed by a transition action which

instantaneously moves agents in the non-colliding way to form a new arrangement

𝛼𝑖+1. The transition between 𝛼𝑖 and 𝛼𝑖+1 must satisfy the following validity conditions:

(1) ∀𝑎 ∈ 𝐴 either 𝛼𝑖(𝑎) = 𝛼𝑖+1(𝑎) or {𝛼𝑖(𝑎), 𝛼𝑖+1(𝑎)} ∈ 𝐸 holds

 (agents move along edges or wait at their current location),

(2) ∀𝑎 ∈ 𝐴 𝛼𝑖(𝑎) ≠ 𝛼𝑖+1(𝑎) ⇒ 𝛼𝑖
−1(𝛼𝑖+1(𝑎)) =⊥

 (agents move to vacant vertices only), and

(3) ∀𝑎, 𝑏 ∈ 𝐴 𝑎 ≠ 𝑏 ⇒ 𝛼𝑖+1(𝑎) ≠ 𝛼𝑖+1(𝑏)

(no two agents enter the same target/unique invertibility of resulting

arrangement).

The task in MAPF is to transform 𝛼0 using above valid transitions to 𝛼+. An

illustration of MAPF and its solution is depicted in Figure 1.

a1

a2

a3

α0

v1

v2

v7

α1

v1

v3

v4

α2

v2

v3

v4

α3

v5

v3

v1

α4 = α+

v8

v3

v2

α0

5

1

9

2

6

10

3

7

4

8

11

12 13 14
a

1

a
2

a
3

MAPF Σ=(G, {a1,a2,a3}, α0, α+)

α+

5

Definition 2 (MAPF solution). A solution for MAPF instance Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] is a

sequence of arrangements [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜇] where 𝛼𝜇 = 𝛼+ and 𝛼𝑖+1 is a result of

valid transition from 𝛼𝑖 for every = 1,2, … , 𝜇 − 1 . □

Fig. 2. An instance of the MAPF problem from [31] in which no makespan optimal solution is

sum-of-costs optimal and no sum-of-costs optimal solution is makespan optimal.

The task in MAPF is to transform 𝛼0 using above valid transitions to 𝛼+. An

illustration of MAPF and its solution is depicted in Figure 1.

Definition 3 (MAPF solution). A solution for MAPF instance Σ = [𝐺, 𝐴, 𝛼0, 𝛼+] is a

sequence of arrangements [𝛼0, 𝛼1, 𝛼2, … , 𝛼𝜇] where 𝛼𝜇 = 𝛼+ and 𝛼𝑖+1 is a result of

valid transition from 𝛼𝑖 for every = 1,2, … , 𝜇 − 1 . □

Makespan 𝜇 is the total number of time steps until the last agent reaches its

destination. Sum-of-costs denoted 𝜉 is the sum of path costs per individual agents. Each

action (including wait) of an agent before it reaches its goal has unit cost.

2.1 Makespan vs. Sum-of-Costs

There exists an instance in which all the sum-of-costs optimal solutions are not

makespan optimal. Similarly, none of the makespan optimal solution is sum-of-costs

optimal there (see Figure 2 for illustration).

In the SAT-based optimal MAPF solver described below, a proper relation between

makespan and sum-of-costs need to be found as both objectives are bounded during

search. We need to ensure that smallest cost found under the given makespan bound is

optimal (see [30] for more detailed discussion).

1

2

3

4

5

6

A

C

F

D

E

a
2

a
1

7

8

9

B
μ = 7
ξ* = 11

μ* = 6
ξ = 12

a
1

a
2

α
0

A

7

α
1

F

2

α
2

E

3

α
3

D

4

α
6

= α
+

6

8

α
4

C

5

α
5

B

9

Optimal makespan μ*
Sub-optimal sum-of-costs ξ

a
1

a
2

α
0

A

7

α
1

9

C

α
2

5

D

α
3

4

E

α
7

= α
+

6

8

α
4

3

8

α
5

2

8

α
6

1

8

Optimal sum-of-costs ξ*
Sub-optimal makespan μ

6

3 Related Work

Many other successful algorithms exist for the optimal MAPF solving. The state-of-

the-art search-based algorithms (though there is no universal winner) include increas-

ing cost tree search - ICTS [19], conflict base search - CBS [20], and improved CBS –

ICBS [7]. These algorithms excel in setups with relatively few agents on large maps.

 Another research direction is represented by methods based on reduction of the

MAPF problem to another formalism. Except the SAT as a target formalism, successful

attempts to reduce MAPF to constraint optimization problem [18], inductive logic pro-

gramming [33], and answer set programming [9] have been made. These approaches

(the SAT approach including) can be generally characterized by a high performance in

MAPFs with small underlying graph densely populated with agents. This is a natural

outcome of the maturity of solvers used to solve hard combinatorial problems in the

target formalism.

 Recently new research directions driven by applications have been identified in the

MAPF context. For example, it is not always necessary to distinguish between individ-

ual agents – see [14] for detailed survey.

4 SAT Encoding for Optimal Sum-of-Costs

In this paper, we follow the algorithm solving sum-of-cost optimal MAPF via reduction

to SAT presented in [30].

The basic approach in solving MAPF via SAT is to create a time expansion graph

(denoted TEG) [29]. A TEG is a directed acyclic graph (DAG). First, the set of vertices

of the underlying graph 𝐺 are duplicated for all time-steps from 0 up to the given bound

𝜇. Then, possible actions (move along edges or wait) are represented as directed edges

between successive time steps. Formally a TEG is defined as follows:

Definition 3 (TEG). Time expansion graph of depth 𝜇 for underlying graph (𝑉, 𝐸) is a

digraph (𝑉𝜇 , 𝐸𝜇) where 𝑉𝜇 = {𝑢𝑗
𝑡|𝑡 = 0,1, … , 𝜇 ∧ 𝑢𝑗 ∈ 𝑉} and 𝐸𝜇 = {(𝑢𝑗

𝑢, 𝑢𝑘
𝑡+1)|

𝑡 = 0,1, … , 𝜇 − 1 ∧ ({𝑢𝑗, 𝑢𝑘} ∈ 𝐸 ∨ 𝑗 = 𝑘)}. □

The encoding for MAPF introduces propositional variables and constraints for a sin-

gle time-step 𝑡 in order to represent any possible arrangement of agents at time 𝑡. Given

a desired makespan 𝜇, the formula represents the question of whether there is a solution

in the TEG of 𝜇 time steps. The search for optimal makespan is done by iteratively

incrementing 𝜇 (= 0,1,2 …) until a satisfiable formula is obtained.

To find the optimal sum-of-costs solution, we use similar technique as with optimal

makespan solution. The sequence of decision problems is whether there exists a solu-

tion of a given sum-of-cost 𝜉. However, encoding this decision problem is more chal-

lenging than the makespan case, because one needs to both bound the sum-of-costs, but

also to predict how many time expansions are needed. We address this challenge by

using two key techniques described next: (1) Cardinality constraint for bounding 𝜉 and

(2) Bounding the Makespan.

7

4.1 Cardinality Constraint for Bounding 𝝃

The SAT literature offers a technique for encoding a cardinality constraint [3, 21],

which allows calculating and bounding a numeric cost within the formula. Formally,

for a bound 𝜆 ∈ ℕ and a set of propositional variables 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑘} the cardinal-

ity constraint ≤𝜆 {𝑥1, 𝑥2, … , 𝑥𝑘} is satisfied iff the number of variables from the set 𝑋

that are set to TRUE is ≤ 𝜆.

In our SAT encoding, we bound the sum-of-costs by mapping every agent’s action

to a propositional variable, and then encoding a cardinality constraint on these varia-

bles. Thus, one can use the general structure of the makespan SAT encoding (which

iterates over possible makespans), and add such a cardinality constraint on top.

4.2 Bounding the Makespan for the Sum of Costs

We compute how many time expansions (𝜇) are needed to guarantee that if a solution

with sum-of-costs 𝜉 exists then it will be found. In other words, in our encoding, the

values we give to 𝜉 and 𝜇 must fulfill the following requirement:

R1: all possible solutions with sum-of-costs 𝜉 must be possible for a makespan of at

most 𝜇.

To find a 𝜇 value that meets R1, we require the following definitions. Let 𝜉0(𝑎𝑖) be

the cost of the shortest individual path for agent 𝑎𝑖, and let 𝜉0 = ∑ 𝜉0(𝑎𝑖)𝑎𝑡∈𝐴 . 𝜉0 was

called the sum of individual costs (SIC) [19]. 𝜉0 is an admissible heuristic for optimal

sum-of-costs search algorithms, since 𝜉0 is a lower bound on the minimal sum-of-costs.

𝜉0 is calculated by relaxing the problem by omitting the other agents. Similarly, we

define 𝜇0 = max
𝑎𝑡∈𝐴

𝜉0(𝑎𝑖). 𝜇0 is length of the longest of the shortest individual paths and

is thus a lower bound on the minimal makespan. Finally, let Δ be the extra cost over

SIC (as done in [19]). That is, let Δ = 𝜉 − 𝜉0.

Proposition 1 For makespan 𝜇 of any solution with sum-of-costs 𝜉, R1 holds for 𝜇 ≤
𝜇0 + 𝛥.

Proof outline: The worst-case scenario, in terms of makespan, is that all the Δ extra

moves belong to a single agent. Given this scenario, in the worst case, Δ is assigned to

the agent with the largest shortest path. Thus, the resulting path of that agent would be

𝜇0 + Δ, as required. □

Using Proposition 1, we can safely encode the decision problem of whether there is

a solution with sum-of-costs 𝜉 by using 𝜇 = 𝜇0 + Δ time expansions, knowing that if a

solution of cost 𝜉 exists then it will be found within 𝜇 = 𝜇0 + Δ time expansions. In

other words, Proposition 1 shows relation of both parameters 𝜇 and 𝜉 which will be

both changed by changing Δ. Algorithm 1 summarizes our optimal sum-of-costs algo-

rithm. In every iteration, 𝜇 is set to 𝜇0 + Δ and the relevant TEGs (described below) for

the various agents are built. Next a decision problem asking whether there is a solution

8

with sum-of-costs 𝜉 and makespan 𝜇 is queried. The first iteration starts with Δ = 0.

If such solution exists, it is returned. Otherwise 𝜉 is incremented by one, Δ and conse-

quently 𝜇 are modified accordingly and another iteration of SAT consulting is activated.

Algorithm 1. SAT consult illustrating the increase in Δ

MAPF-SAT (MAPF Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+))

 𝜇0 = max
𝑎𝑡∈𝐴

𝜉0(𝑎𝑖), Δ = 0

 while Solution not found do

 𝜇 = 𝜇0 + Δ
 for each agent 𝑎𝑖 do

 Build TEGi(𝜇)
 end

 Solution = Consult-SAT-Solver(Σ, 𝜇, Δ)
 if Solution not found then

 Δ + +
 end

 end

 return (Solution)

end

This algorithm clearly terminates for solvable MAPF instances as we start seeking a

solution of 𝜉 = 𝜉0(Δ = 0) and increment Δ (which increments 𝜉 and 𝜇 as well) to all

possible values. The unsolvability of an MAPF instance can be checked separately by

a polynomial-time complete sub-optimal algorithm such as PUSH-AND-ROTATE [35].

4.3 Efficient Use of the Cardinality Constraint

The complexity of encoding a cardinality constraint depends linearly in the number of

constrained variables [21, 23]. Since each agent 𝑎𝑖 must move at least 𝜉0(𝑎𝑖), we can

reduce the number of variables counted by the cardinality constraint by only counting

the variables corresponding to extra movements over the first 𝜉0(𝑎𝑖) movement 𝑎𝑖

makes. We implement this by introducing a TEG for a given agent 𝑎𝑖 (labeled TEGi).

TEGi differs from TEG (Definition 3) in that it distinguishes between two types of

edges: 𝐸𝑖 and 𝐹𝑖. 𝐸𝑖 are (directed) edges whose destination is at time step ≤ 𝜉0(𝑎𝑖).

These are called standard edges. 𝐹𝑖 denoted as extra edges are directed edges whose

destination is at time step ≥ 𝜉0(𝑎𝑖). Figure 3 shows an underlying graph for agent 𝑎1

(left) and the corresponding TEG1. Note that the optimal solution of cost 2 is denoted

by the diagonal path of the TEG. Edges that belong to 𝐹𝑖 are those that their destination

is time step 3 (dotted lines). The key in this definition is that the cardinality constraint

would only be applied to the extra edges, that is, we will only bound the number of

extra edges (they sum up to Δ) making it more efficient. There are various possibilities

to define what happens to an agent when it reaches the goal (disappears, waits etc.). In

9

all cases, edges in TEGs corresponding to wait actions at the goal are not marked as

extra. Importantly, our SAT approach is robust across all these variants.

Fig. 3. A TEG for an agent that needs to go from 𝑢1 to 𝑢3.

4.4 Detailed Description of the SAT Encoding

Agent 𝑎𝑖 must go from its initial position to its goal within TEGi. This simulates its

location in time in the underlying graph 𝐺. That is, the task is to find a path from 𝑎0
0(𝑎𝑖)

to 𝑎+
𝜇(𝑎𝑖) in TEGi. The search for such a path will be encoded within the Boolean for-

mula. Additional constraints will be added to capture all movement constraints such as

collision avoidance etc. And, of course, we will encode the cardinality constraint that

the number of extra edges must be exactly 𝛥.

We want to ask whether a sum-of-costs solution of 𝜉 exists. For this we build TEGi

for each agent 𝑎𝑖 ∈ 𝐴 of depth 𝜇0 + Δ. We use 𝑉𝑖 to denote the set of vertices in TEGi

that agent 𝑎𝑖 might occupy during the time steps. Next we introduce the Boolean en-

coding (denoted BASIC-SAT) which has the following Boolean variables:

1. χ𝑗
𝑡(𝑎𝑖) for every 𝑡 ∈ {0,1, … , 𝜇} and 𝑢𝑗

𝑡 ∈ 𝑉𝑖 – Boolean variable of whether agent 𝑎𝑖

is in vertex 𝑣𝑗 at time step 𝑡.

2. ℰ𝑗,𝑘
𝑡 (𝑎𝑖) for every 𝑡 ∈ {0,1, … , 𝜇 − 1} and (𝑢𝑗

𝑡 , 𝑢𝑘
𝑡+1) ∈ (𝐸𝑖 ∪ 𝐹𝑖) – Boolean variable

that model transition of agent 𝑎𝑖 from vertex 𝑣𝑗 to 𝑣𝑘 through any edge (standard or

extra) between time steps 𝑡 and 𝑡 + 1 respectively.

3. ∁𝑡(𝑎𝑖) for every 𝑡 ∈ {0,1, … , 𝜇 − 1} such that there exist 𝑢𝑗
𝑡 ∈ 𝑉𝑖 and 𝑢𝑘

𝑡+1 ∈ 𝑉𝑖 with

(𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ 𝐹𝑖 – Boolean variables that model cost of movements along extra edges

(from 𝐹𝑖) between time steps 𝑡 and 𝑡 + 1.

We now introduce constraints on these variables to restrict illegal values as defined

by our variant of MAPF. Other variants may use a slightly different encoding but the

principle is the same. Let 𝑇𝜇 = {0,1, … , 𝜇 − 1}. Several groups of constraints are intro-

duced for each agent 𝑎𝑖 ∈ 𝐴 as follows:

α+

α0

a1

MAPF Σ=(G, {a1}, α0, α+)

a1

TEG1 for 𝜇 = 4

a1

(V1,E1,F1)

u0
1

u0
2

u0
3

u3
1

u3
2

u3
3

Ei standard
Fi extra

edges

time step

0 1 2 3

u2
1

u2
2

u2
3

u1
1

u1
2

u1
3

u2

u1

u3

u2

u1

u3

10

C1: If an agent appears in a vertex at a given time step, then it must follow through

exactly one adjacent edge into the next time step. This is encoded by the following

two constraints, which are posted for every 𝑡 ∈ 𝑇𝜇 and 𝑢𝑗
𝑡 ∈ 𝑉𝑖.

 χ𝑗
𝑡(𝑎𝑖) ⇒ ⋁ ℰ𝑗,𝑘

𝑡 (𝑎𝑖)(𝑢𝑗
𝑡,𝑢𝑘

𝑡+1)∈(𝐸𝑖∪𝐹𝑖) (1)

 ⋀ ¬ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ∨ ¬ℰ𝑗,𝑙

𝑡 (𝑎𝑖)(𝑢𝑗
𝑡,𝑢𝑘

𝑡+1),(𝑢𝑗
𝑡,𝑢𝑙

𝑡+1)∈(𝐸𝑖∪𝐹𝑖)∧𝑘<𝑙 (2)

C2: Whenever an agent occupies an edge it must also enter it before and leave it at the

next time-step. This is ensured by the following constraint introduced for every

𝑡 ∈ 𝑇𝜇 and (𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ (𝐸𝑖 ∪ 𝐹𝑖).

 ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ⇒ χ𝑗

𝑡(𝑎𝑖) ∧ χ𝑘
𝑡+1(𝑎𝑖) (3)

C3: The target vertex of any movement except wait action must be empty. This is

ensured by the following constraint introduced for every 𝑡 ∈ 𝑇𝜇 and (𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈

(𝐸𝑖 ∪ 𝐹𝑖) such that 𝑗 ≠ 𝑘.

 ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ⇒ ⋀ χ𝑘

𝑡+1(𝑎𝑙)𝑎𝑙∈𝐴∧𝑎𝑙≠𝑎𝑖∧𝑢𝑘
𝑡+1∈𝑉𝑙

 (4)

C4: No two agents can appear in the same vertex at the same time step (although the

previous constraint ensures that an agent does not collide with an agent currently

residing in a vertex it does not prevent simultaneous entering of the same vertex

by multiple agents). That is the following constraint is added for every 𝑡 ∈ 𝑇𝜇 and

pair of agents 𝑎𝑖 , 𝑎𝑙 ∈ 𝐴 such that 𝑖 ≠ 𝑙.

 ⋀ ¬χ𝑗
𝑡 (𝑎𝑖) ∨ ¬𝑢𝑗

𝑡∈𝑉𝑖∩𝑉𝑙
χ𝑗

𝑡 (𝑎𝑙) (5)

C5: Whenever an extra edge is traversed the cost needs to be accumulated. In fact, this

is the only cost that we accumulate as discussed above. This is done by the fol-

lowing constraint for every 𝑡 ∈ 𝑇𝜇 and extra edge (𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ 𝐹𝑖 .

 ℰ𝑗,𝑘
𝑡 (𝑎𝑖) ⇒ ∁𝑡(𝑎𝑖) (6)

C6: Cardinality constraint. Finally, the bound on the total cost needs to be intro-

duced. Reaching the sum-of-costs of 𝜉 corresponds to traversing exactly Δ extra

edges from 𝐹𝑖. The following cardinality constrains ensures this:

 ≤Δ {∁𝑡(𝑎𝑖)|𝑖 = 1,2, … , 𝑛 ∧ 𝑡 = 0,1, … 𝜇 − 1 ∧ {(𝑢𝑗
𝑡 , 𝑢𝑘

𝑡+1) ∈ 𝐹𝑖} ≠ ∅} (7)

The resulting Boolean formula that is a conjunction of C1 … C7 will be denoted as

ℱ𝐵𝐴𝑆𝐼𝐶(Σ, 𝜇, Δ) and is the one that is consulted by Algorithm 1.

The following proposition summarizes the correctness of our encoding.

Proposition 2 MAPF Σ = (𝐺 = (𝑉, 𝐸), 𝐴, 𝛼0, 𝛼+) has a sum-of-costs solution of 𝜉 if

and only if ℱ𝐵𝐴𝑆𝐼𝐶 (Σ, 𝜇, Δ) is satisfiable. Moreover, a solution of MAPF Σ with the sum-

11

of-costs of 𝜉 can be extracted from the satisfying valuation of ℱ𝐵𝐴𝑆𝐼𝐶(Σ, 𝜇, Δ) by reading

its χ𝑗
𝑡(𝑎𝑖) variables.

Proof: The direct consequence of the above definitions is that a valid solution of a

given MAPF Σ corresponds to non-conflicting paths in the TEGs of the individual

agents. These non-conflicting paths further correspond to satisfying the variable assign-

ment of ℱ𝐵𝐴𝑆𝐼𝐶(Σ, 𝜇, Δ), i.e., that there are Δ extra edges in TEGs of depth 𝜇 = 𝜇0 +
Δ. □

As discussed in [30], the limitation of BASIC-SAT encoding is its size which is

implied by the size of the time expanded graph. To mitigate this limitation Surynek et

al. took inspiration from another successful search-based solver called increasing cost

tree search (ICTS) [19]. Vertices whose sum of distances from 𝑎0
0(𝑎𝑖) and 𝑎+

𝜇(𝑎𝑖) in

TEGi is greater than 𝜇 can never be visited by 𝑎𝑖 in any optimal solution or else 𝑎𝑖

would not have enough time steps to reach 𝑎+
𝜇(𝑎𝑖). Omitting those vertices from TEGs

that are too far in the aforementioned sense would not compromise soundness of the

solving process but would lead to a smaller formula. In [30], this version of TEGs where

unreachable vertices are omitted is called MDD and corresponding formula is denoted

as ℱ𝑀𝐷𝐷(Σ, 𝜇, Δ). When referring to MDD-SAT solver we assume the version with

MDDs.

Using MDDs can rule out many vertices that would be normally considered in

standard time expansions. Experiments confirmed that MDDs enabled using the SAT-

based approach even for large MAPF instances for which the size of encodings without

MDD was prohibitive.

5 Independence Detection

Our major aim is to increase performance of the SAT-based MAPF solver by reducing

the number of agents needs to be considered at once. This has been successfully done

in search based methods via a technique called independence detection.

In this section, we will describe the original method of independence detection pro-

posed by Standley (2010). The main idea behind this technique is that difficulty of

MAPF solving optimally grows exponentially with the number of agents. It would be

ideal, if we could divide the problem into a series of smaller sub problems, solve them

independently at low computational effort, and then combine them.

The simple approach, called simple independence detection (SID), assigns each

agent to a group so that every group consists of exactly one agent. Then, for each of

these groups, an optimal solution is found independently. Every pair of these solutions

is evaluated and if the two groups’ solutions are in conflict (that is, when collision of

agents belonging to different group occurs), the groups are merged and replanned to-

gether. If there are no conflicting solutions, the solutions can be merged to a single

solution of the original problem. This approach can be further improved by avoiding

merging of groups.

12

Fig. 4. A schematic illustration from [31] of path replanning within the independence detection

technique. A path for the group 𝐺1 conflicted with paths of other two groups (left part). Then

path for 𝐺1 has been successfully replanned (right part).

Algorithm 2. MAPF solving algorithm based on independence detection (ID) technique. Plan-

ning for groups is always done to have least number of conflicts w.r.t. conflict avoidance table.

assign each agent to a group;

plan a path for each group by A*;

fill conflict avoidance table;

while conflicting groups exist

G1, G2 = conflicting groups;

if G1, G2 not conflicted before

 replan G1 by A* with illegal moves based on G2;

if failed to replan G1

 replan G2 by A* with illegal moves based on G1;

endif

endif

if no alternate paths for G1, G2

merge G1 and G2;

plan a path for new group by A*;

endif

update conflict avoidance table;

end

return combined paths of all groups;

vertices

time

u2 u1 u3 u4 u5 u
2
 u1 u

3
 u

4
 u5

G1 G2 G3 G1 G2 G3

13

Generally, each agent has more than one possible optimal path. However, SID con-

siders only one of these paths. The improvement of SID known as independence detec-

tion (ID) is as follows. Let’s have two conflicting groups 𝐺1 and 𝐺2. First, try to replan

𝐺1 so that the new solution has the same cost and the steps that are in conflict with 𝐺2

are forbidden.

If no such solution is possible, try to similarly replan 𝐺2. If this is not possible, merge

𝐺1 and 𝐺2 into a new group. In case either of the replanning was successful, that group

needs to be evaluated with every other group again. This can lead to infinite cycle.

Therefore, if two groups were already in conflict before, merge them without trying to

replan.

Standley uses ID in combination with the A* algorithm. While planning, it is pre-

ferred to find paths that create the least possible amount of conflicts with other groups

that have already planned paths. For this purpose, the conflict avoidance table is created

(see Algorithm 2 for pseudo-code).

The table stores moves of agents in other groups. In case A* has a choice between

several nodes with the same minimal 𝑓() cost, the one with least amount of conflicts is

expanded first. This technique yields an optimal solution that has a minimal number of

conflicts with other groups. This property is useful when replanning of a group’s solu-

tion is needed.

Both SID and ID do not solve MAPF on their own, they only divide the problem

into smaller sub-problems that are solved by any possible MAPF algorithms. Thus, ID

and SID are general frameworks which can be executed on top of any MAPF solver.

6 Integrating SID and ID into MDD-SAT

SID can be integrated into the SAT-based framework as a top-level algorithm where

MDD-SAT merely serves as a procedure for optimal MAPF solving restricted on an

individual group. Hence, no modification of the core MDD-SAT procedure is needed.

ID however requires modification of the original ID since in the propositional for-

mula it is not possible to express preference that individual paths of groups of agents

should avoid occupied positions in the conflict avoidance table. In the yes/no SAT en-

vironment we either manage to avoid occupied positions or not while in the negative

case there is no easy tool how to control the number of conflicts.

 The SAT-based version of ID works in similar way to the original version of Stand-

ley but instead of resolving conflicts between a pair of conflicting groups 𝐺1 and 𝐺2 it

resolves conflict of group 𝐺1 with all other groups. If this attempt is successful, 𝐺1 is

independent on others and the process can continue with resolving conflicts between

remaining groups (see Figure 4 where 𝐺1 has been made independent).

If the attempt to resolve conflict between 𝐺1 and 𝐺2 by making 𝐺1 independent fails,

the same is tried for 𝐺2. If the attempt for 𝐺2 fails too groups are merged. The pseudo-

code is shown as Algorithm 3.

In contrast to original ID we strictly require avoidance with respect to the conflict

avoidance table instead of stating it as a preference only. This is technically done by

omitting the conflicting vertices in the MDD. The SAT approach does not allow to

express a preference like in the search based algorithm. This is the reason why ID in

the SAT-based solver differs from the original one.

14

Algorithm 3. Independence detection in the SAT-based framework. Conflict aviodance is

strictly required.

assign each agent to a group;

plan a path for each group G1,…,Gk by MDD-SAT;

fill conflict avoidance table;

while conflicting groups exist

G1, G2 = conflicting groups;

if G1, G2 not conflicted before

replan G1 by MDD-SAT with illegal moves based on

{G1,…,Gk}-G1;

if failed to replan G1

replan G2 by MDD-SAT with illegal moves based on

{G1,…,Gk}-G2;

endif

endif

if no alternate paths for G1, G2

merge G1 and G2;

plan a path for new group by MDD-SAT;

endif

update conflict avoidance table;

end

return combined paths of all groups;

7 Experiments

We performed experimental comparison of the proposed MDD-SAT+SID and MDD-

SAT+ID solvers with other state-of-the-art solvers – namely with the previous best

SAT-based solver MDD-SAT and also with search-based algorithms ICTS and ICBS.

 The MDD-SAT+SID and MDD-SAT+ID have been implemented in C++ as an ex-

tension of an existing implementation of the MDD-SAT solver. A couple of minor im-

provements have been done in the original MDD-SAT encoding – some auxiliary prop-

ositional variables have been eliminated which reduced the size of the encoding and

consequently saved runtime while generating formulae (this improvement affects both

MDD-SAT and new MDD-SAT+SID, MDD-SAT+ID used in presented experiments).

 We used Glucose 3.0 [1] in variants of MDD-SAT which is a top performing

SAT solver according to the recent SAT Competitions [4]. The complete implementa-

tion of the MDD-SAT solvers is available on-line to allow reproducibility of the pre-

sented results: http://ktiml.mff.cuni.cz/~surynek/research/icaart2017.

 ICTS and ICBS have been implemented in C#. The original implementations of

these algorithms have been used.

 All the tests were run on Xeon 2Ghz, and on Phenom II 3.6Ghz, both with 12 Gb of

memory.

 The experimental setup followed the scheme used in the literature [22] which tests

MAPF algorithms on 4-connected grids. Let us note however that all the suggested

http://ktiml.mff.cuni.cz/~surynek/research/icaart2017

15

algorithms are designed and implemented for general undirected graphs (the fact that

grids are used in the experiments is not exploited to increase efficiency of solving in

any way).

7.1 Small Grids Evaluation

The first series of experiments takes place on small square grids of sizes 8×8, 16×16,

and 32×32 with 10% of vertices occupied by obstacles. In this setup of the environ-

ment, we increased population of agents from 1 and observed the runtime of all the

solvers until no solver was able to solve the instance within the given time limit of 300

seconds (this was 20 agents for 8×8 grid, and 40 and 60 for 16×16 and 32×32 girds

respectively).

Fig. 5. Results of experiments on small grid maps of sizes 8×8, 16×16, and 32×32. Figures

show how many instances were solved within the given runtime and sorted runtimes (right bot-

tom part). Clearly versions of MDD-SAT dominate in the test over search based algorithms ICTS

and ICBS except few quickly solvable cases. Moreover, MDD-SAT+ID and MDD-SAT+SID

outperforms MDD-SAT in cases with low to medium density of agents. MDD-SAT+ID and

MDD-SAT+SID exhibit similar performance while ID shows its advantage in instances requiring

more time.

0

20

40

60

80

100

120

140

160

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 8x8|10% obstacles

MDD-SAT+SID

MDD-SAT

MDD-SAT+ID

ICBS

ICTS

0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 16x16|10% obstacles

0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Grid 32x32 | 10% obstacles

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

R
u

n
ti

m
e

 (s
ec

o
n

d
s)

Instance

Sorted Runtimes|Grid 32x32

ICTS

ICBS

MDD-SAT

MDD-SAT+SID

MDD-SAT+ID

16

Ten randomly generated instances per number of agents were used. The initial po-

sitions were generated by choosing a subset of vertices randomly. The goal arrangement

has been generated as a long random walk from the initial state following valid moves

– this ensured solvability of all the tested instances.

To be able to communicate results of experiments more easily we intuitively distin-

guish three different categories of instances with respect to the density of agents as

follows. The behavior of solvers is then discussed with respect to these categories:

▪ Low density – few interactions among agents, paths for individual agents can be

planned independently.

▪ Medium density – some interaction among agents are inevitable but there exist

multiple groups of agents that are independent of each other.

▪ High density – majority of agents are interdependent and form one large group.

The small grid experiment contains instances from all these three cases. The hy-

pothesis is that the SID and ID technique will be helpful in instances with medium

density of agents while ID is expected to reach benefit in higher densities of agents. We

also expect that in the case of low density of agents there will be some benefit of SID

and ID since many agents will just follow their shortest paths towards goals in such a

case. As in low and medium density cases the complexity of the formula is not propor-

tional to the difficulty of the instance.

Furthermore, we expect rather negative effect of using SID and ID in instances with

high density of agents. This is because of the fact that most agents will be gradually

merged into a large group while the process of merging represents an overhead in such

a case.

Experimental result for the small grids (see Figure 5) confirmed the hypothesis.

MDD-SAT+SID/ID win in low to medium density of agents. For the higher density of

agents, both MDD-SAT+SID/ID tend to be eventually outperformed by the original

MDD-SAT. If SID and ID are compared then we can see that ID has more significant

benefit than SID in most cases.

7.2 Large Maps – Dragon Age

We also experimented on three structurally different large maps from Dragon Age: Or-

igins [26] – ost003d, den520d, and brc202d (see Figure 5). Our choice of maps

is driven by the choice of authors in the previous literature [20, 30].

Fig. 6. Illustration of large Dragon Age maps ost003d (size 194×194), den520d (size

257×256), and brc202d (size 481×530).

ost003d den520d brc202d

17

We used setup with 16 and 32 agents randomly paced agents which represents low

to medium density. Let us note that a case with high density of agents in the map of that

size is currently out of reach of any existing algorithm.

Fig. 7. Results of experiments on Dragon Age map ost003d. MDD-SAT+ID outperforms

MDD-SAT in harder instances while MDD-SAT+SID performs worse than MDD-SAT. All

MDD-SAT versions are dominated by ICTS.

 To obtain problems of various difficulties the distance of agents from initial posi-

tions to their goals has been varied in the range 8, 16, 24, …, 320.

Fig. 8. Results of experiments on Dragon Age map den520d. ID brings minor benefit in harder

instances while SID has merely a negative effect.

For each distance 10 random instances were generated in which initial positions were

selected randomly and then random walk has been performed until all the agents reach

at least the given distance from its initial position.

The hypothesis for large maps is that MDD-SAT+SID/ID should dominate gener-

ally with some expected advantage of ID which in fact is the same hypothesis as in the

case of small grids because here we have only the low-medium density case. However,

0

50

100

150

200

250

300

350

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Ost003d|16 agents

MDD-SAT+ID

MDD-SAT+SID

MDD-SAT

ICBS

ICTS

0

50

100

150

200

250

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Ost003d|32 agents

0

50

100

150

200

250

300

350

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|16 agents

MDD-SAT+ID

MDD-SAT

ICBS

MDD-SAT+SID

ICTS

0

50

100

150

200

250

300

350

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Den520d|32 agents

18

as there are important structural differences between the three tested maps which impact

is hardly predictable. Intuitively, SID/ID should have been more beneficial in

ost003d and den520d maps since in these maps there is more room to find alterna-

tive paths.

Results for the three Dragon Age maps are shown in figures 7, 8, and 9. Again the

number of instances solved in the given runtime is shown. The difficulty (runtime)

grows with the growing distance of agents from their goals in this setup.

It can be read from these results that MDD-SAT+ID tends to outperform MDD-

SAT in more difficult instances. In these instances, the interaction among agents in non-

trivial but on the other hand the interdependence among agents is tractable by ID.

Surprising results have been obtained for MDD-SAT+SID which performed gener-

ally worse than MDD-SAT. SID hence was unsuccessful in independence detection

enough to produce any performance benefit in MDD-SAT expect the case of very easy

instances.

The intuitive hypothesis was not confirmed completely since surprisingly MDD-

SAT is better than MDD-SAT+ID in easier instances of medium density category usu-

ally and the performance of MDD-SAT+SID remained behind expectation. Our initial

intuitive hypothesis did estimate well the effort needed for merging groups that even-

tually represents a big overhead in case of large maps. Hence, MDD-SAT+ID can show

its benefit after the difficulty of the formula representing the entire MAPF instance

prevails over the difficulty of group merging.

Another surprising result was obtained in brc202d map where MDD-SAT+ID was

a very clear winner in harder instances with 32 agents.

Moreover, we cannot say that SAT-based approach represented by MDD-SAT and

MDD-SAT+SID/ID is a universal winner as there are cases where ICTS and ICBS

dominate (ost003d with 32 agents is such an example).

7.3 Discussion

It can be generally observed that ID brings worthwhile improvement to MDD-SAT

solver which by itself performs very well. The simple version of independence detec-

tion SID provides worse benefit than ID and in large instances its effect is even nega-

tive.

Experimental results indicate that there is a certain range of the density of agents

though not precisely determined in our evaluation in which ID is beneficial while out-

side this range it cases an overhead.

 The implementation of ID within the MDD-SAT+ID solver did not use any special

reasoning about what groups of agents should be merged or not. The groups were pro-

cessed in the ordering given by the original ordering of agents. We expect that more

careful reasoning about merging can bring yet more improvements.

8 Conclusion

We described how to integrate existing technique of independence detection (ID) and

simple ID (SID) developed originally for search-based MAPF solver into the SAT-

based approach to MAPF.

19

 Experimental results confirm significant benefit of using ID within the SAT-based

approach to optimal MAPF solving. The benefit is especially evident in instances with

medium density of agents where interactions among agents are non-trivial but there

exist group of agents that are independent of each other.

The suggested MDD-SAT+ID solver which is the result of integration of ID into an

existing SAT-based MAPF solver MDD-SAT became a new state-of-the-art in optimal

SAT-based MAPF solving. Moreover, the new MDD-SAT+ID performs well with re-

spect to best search based solvers ICTS and ICBS though we cannot say there is a uni-

versal winner.

 There are important future research directions which we just touched in this work.

First, the performed experimental evaluation indicates the need to develop concepts for

more precise classification of density and interaction among agents. Such a classifica-

tion should ultimately lead to determining automatically in which cases ID would be

beneficial and in which cases not.

Fig. 9. Results of experiments on Dragon Age map brc202d. ID brings significant improve-

ment in harder instances with 32 agents. SID again has rather a negative effect in MDD-SAT.

The second future direction would become very apparent after a close look at the

implementation. Currently we take groups of agents to be merged in the same order as

they appear in the input. A more informed consideration which groups of agents should

be merged may bring further reduction of the size of groups of agents.

Acknowledgements

This paper is supported by the AIRC project commissioned by the New Energy and

Industrial Technology Development Organization Japan (NEDO), joint grant of the Is-

rael Ministry of Science and the Czech Ministry of Education Youth and Sports number

8G15027, and Charles University under the SVV project number 260 333.

 We would like thank anonymous reviewers for their constructive comments of [31]

which helped us to prepare this extended version of the paper.

0

50

100

150

200

250

300

350

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Brc202d|16 agents

MDD-SAT+SID
MDD-SAT
ICTS
MDD-SAT+ID
ICBS

0

50

100

150

200

250

300

350

400

1 10 100

N
u

m
b

e
r

o
f

in
st

an
ce

s

Runtime (seconds)

Solved instances
Brc202d|32 agents

20

References

1. Audemard, G., Simon, L.: The Glucose SAT Solver. http://labri.fr/perso/lsimon/glucose/,

2013, [accessed in October 2016].

2. Audemard, G., Simon, L.: Predicting Learnt Clauses Quality in Modern SAT Solvers. Pro-

ceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009),

pp. 399-404, IJCAI, 2009.

3. Bailleux, O. and Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints’,

in CP, pp. 108–122, 2003.

4. Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT 2015 competition. http://www.satcom-

petition.org/, 2015, [accessed in October 2016].

5. Berg, J. van den, Snoeyink, J., Lin, M. C., Manocha, D.: Centralized path planning for mul-

tiple robots: Optimal decoupling into sequential plans. Proceedings of Robotics: Science and

Systems V, University of Washington, The MIT Press, 2010.

6. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press,

2009.

7. Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., Shimony, S.: ICBS:

Improved Conflict-Based Search Algorithm for Multi-Agent Pathfinding. Proceedings of

the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 740-

746, IJCAI, 2015.

8. Čáp, M., Novák, P., Vokřínek, J., Pěchouček, M.: Multi-agent RRT: sampling-based coop-

erative pathfinding. International conference on Autonomous Agents and Multi-Agent Sys-

tems (AAMAS 2013), pp. 1263-1264, IFAAMAS, 2013.

9. Erdem, E., Kisa, D. G., Öztok, U., Schüller, P.: A General Formal Framework for Pathfind-

ing Problems with Multiple Agents. Proceedings of the 27th AAAI Conference on Artificial

Intelligence (AAAI 2013), AAAI Press, 2013.

10. Huang, R., Chen, Y., Zhang, W.: A Novel Transition Based Encoding Scheme for Planning

as Satisfiability. Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI

2010), AAAI Press, 2010.

11. Kautz, H., Selman, B.: Unifying SAT-based and Graph-based Planning. Proceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 318-325,

Morgan Kaufmann, 1999.

12. Kim, D., Hirayama, K., Park, G.-K.: Collision Avoidance in Multiple-Ship Situations by

Distributed Local Search. Journal of Advanced Computational Intelligence and Intelligent

Informatics (JACIII), Volume 18(5), pp. 839-848, Fujipress, 2014.

13. Kornhauser, D., Miller, G. L., Spirakis, P. G.: Coordinating Pebble Motion on Graphs, the

Diameter of Permutation Groups, and Applications. Proceedings of the 25th Annual Sympo-

sium on Foundations of Computer Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

14. Ma, H., Koenig, S., Ayanian, N., Cohen, L., Hoenig W., Kumar, T.K.S., Uras, T., Xu. H.,

Tovey, C., Sharon, G.: Overview: Generalizations of Multi-Agent Path Finding to Real-

World Scenarios. IJCAI-16 Workshop on Multi-Agent Path Finding (WOMPF), 2016.

15. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial

robots. Autonomous Robots, Volume 30(1), pp. 73-86, Springer, 2011.1

16. Ratner, D. and Warmuth, M. K.: NxN Puzzle and Related Relocation Problems. Journal of

Symbolic Computation, Volume 10 (2), pp. 111-138, Elsevier, 1990.

17. Ryan, M. R. K.: Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of

Artificial Intelligence Research (JAIR), Volume 31, 2008, pp. 497-542, AAAI Press, 2008.

18. Ryan, M. R. K.: Constraint-based multi-robot path planning. Proceedings ICRA 2010, pp.

922-928, IEEE Press, 2010.

21

19. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for optimal

multi-agent pathfinding. Artificial Intelligence, Volume 195, pp. 470-495, Elsevier, 2013.

20. Sharon, G., Stern, R., Felner, A., Sturtevant, N. R.: Conflict-based search for optimal multi-

agent pathfinding. Artificial Intelligence, 219, 40-66, Elsevier, 2015.

21. Silva, J. and Lynce, I.: Towards robust CNF encodings of cardinality constraints, Proceed-

ings of CP 2007, pp. 483–497, 2007.

22. Silver, D.: Cooperative Pathfinding. Proceedings of the 1st Artificial Intelligence and Inter-

active Digital Entertainment Conference (AIIDE 2005), pp. 117-122, AAAI Press, 2005.

23. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints, Proceedings

of CP, pp. 827–831, 2005.

24. Standley, T.: Finding Optimal Solutions to Cooperative Pathfinding Problems. Proceedings

of the 24th AAAI Conference on Artificial Intelligence (AAAI-2010), pp. 173-178, AAAI

Press, 2010.

25. Standley, T., Korf, R. E.: Complete Algorithms for Cooperative Pathfinding Problems. Pro-

ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011),

pp. 668-673, IJCAI, 2011.

26. Sturtevant, N. R.: Benchmarks for Grid-Based Pathfinding. IEEE Transactions on Compu-

tational Intelligence and AI in Games, Volume 4(2), pp. 144-148, IEEE Press, 2012.

27. Surynek, P.: A Novel Approach to Path Planning for Multiple Robots in Biconnected

Graphs. Proceedings of the 2009 IEEE International Conference on Robotics and Automa-

tion (ICRA 2009), pp. 3613-3619, IEEE Press, 2009.

28. Surynek, P.: An Optimization Variant of Multi-Robot Path Planning is Intractable. Proceed-

ings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261-1263,

AAAI Press, 2010.

29. Surynek, P.: Compact Representations of Cooperative Path-Finding as SAT Based on

Matchings in Bipartite Graphs. Proceedings of the 26th IEEE International Conference on

Tools with Artificial Intelligence (ICTAI 2014), pp. 875-882, IEEE Computer Society, 2014.

30. Surynek, P., Felner, A., Stern, R., Boyarski, E/:. Efficient SAT Approach to Multi-Agent

Path Finding Under the Sum of Costs Objective. Proceedings of 22nd European Conference

on Artificial Intelligence (ECAI 2016), pp. 810-818, IOS Press, 2016.

31. Surynek, P., Švancara, J., Felner, A., Boyarski, E.: Integration of Independence Detection

into SAT-based Optimal Multi-Agent Path Finding: A Novel SAT-Based Optimal MAPF

Solver. Proceedings of the 9th International Conference on Agents and Artificial Intelli-

gence (ICAART 2017), SciTe Press, 2017.

32. Yu, J., LaValle, S. M.: Structure and intractability of optimal multirobot path planning on

graphs. Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013),

AAAI Press, 2013.

33. Yu, J., LaValle, S. M.: Planning optimal paths for multiple robots on graphs. Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA 2013), pp. 3612-

3617, IEEE Press, 2013.

34. Wang, K. C., Botea, A.: Fast and memory-efficient multi-agent pathfinding, Proceedings

of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008),

pp. 380-387, AAAI Press, 2008.

35. de Wilde, B., ter Mors, A., Witteveen, C.: Push and Rotate: a Complete Multi-robot Path-

finding Algorithm. Journal of Artificial Intelligence Research (JAIR), Volume 51, pp. 443-

492, AAAI Press, 2014.

36. Wilson, R. M.: Graph Puzzles, Homotopy, and the Alternating Group. Journal of Combina-

torial Theory, Ser. B 16, pp. 86-96, Elsevier, 1974.

