
MISTA 2017

Scheduling Models for Multi-Agent Path Finding

Roman Barták · Jǐŕı Švancara · Marek Vlk

Abstract Multi-agent path finding (MAPF) deals with the problem of finding a colli-

sion free path for a set of agents. The agents are located at nodes of a directed graph,

they can move over the arcs, and each agent has its own destination node. It is not

possible for two agents to be at the same node at the same time. This paper suggests

to model the MAPF problem using scheduling techniques, namely, nodes are seen as

unary resources. We present three models of the problem. One model is motivated by

network flows, another model uses classical unary resource constraints together with

path constraints, and the last model works with optional activities. We compare the

efficiency of models experimentally.

1 Introduction

There exist numerous practical situations, where a set of agents is moving in a shared

environment, each agent having its own destination. For example, traffic junctions and

large warehouses are typical examples of congested environments, where agents are

moving between locations while sharing paths. In the era of autonomous systems, it is

important to have efficient solutions for coordinating such agents.

The above problem is known as multi-agent path finding (MAPF) or cooperative

path finding (CPF) [8]. The problem can be formalized as a (directed) graph, where

agents are initially distributed at some nodes, each agent having a destination node

to reach, and the task is to find a plan of movements for each agent to reach the

destination node while not being at the same node as another agent at the same time.

A frequent abstraction assumes that agents are moving synchronously and distances

between the nodes are identical. Then, at each time step, each agent either moves to a

neighboring node or stays in the current node. Grid worlds (such as the famous Lloyd

15-puzzle) are satisfying this assumption. This model makes it natural to use solving

techniques based on Boolean satisfiability or state-space search, which are currently

two leading approaches to solve MAPF. On the other hand, such an abstraction might

Roman Barták, Jǐŕı Švancara, Marek Vlk
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
E-mail: surname@ktiml.mff.cuni.cz

be too restrictive as distances between the nodes might be important (and different)

in some practical applications.

In this paper, we suggest models of MAPF that borrow ideas from scheduling and

routing problems. We see the nodes (and possibly also the arcs) as resources with

limited capacity, which is one in this particular setting but could be larger in future

applications. We model the movements of agents using various techniques, namely

as network flows, as paths, and as optional activities. The motivation is supporting

richer (in comparison to traditional MAPF) temporal and capacity constraints, which

makes the models closer to reality. On the other side, there is one extra restriction

of our current models with respect to traditional MAPF formulation - the models are

designed such that no agent visits the same node more than ones.

2 Background on Multi-Agent Path Finding

The MAPF problem is formulated by a graph and a set of packages (agents) sitting at

certain nodes. The task is to transport packages to their destination nodes – each pack-

age moves itself – while satisfying some capacity constraints, namely no two packages

meet at the same node at the same time. The difference from usual MAPF definition

is that in the rest of the paper, we will also assume that no package enters any node

more than once.

Let G = (V,E,w) be a directed arc-weighted graph and P be a set of packages.

The weight w(a) indicates the duration of moving a package over the arc a. In many

MAPF formulations, this duration is expected to be one. For each package p we denote

orig(p) ∈ V the original location (node) of the package and dest(p) ∈ V its destination

node. Let InArcs(x) be the set of incoming arcs to x and OutArcs(x) be the set of

outgoing arcs from x. Formally,

InArcs(x) = {(y , x) | (y , x) ∈ E},
OutArcs(x) = {(x , y) | (x , y) ∈ E}

The solution for MAPF problem as described above is a sequence of positions in

time for each package that satisfies the condition that no two packages are at the same

node at the same time. In this paper, we will focus on solutions that are makespan

optimal – the total time until the last package reaches its destination is minimized.

The classical MAPF is usually solved by algorithms that can be divided into two

categories:

1. Reduction based solvers. Many solvers reduce MAPF to another known problem

such as SAT [10], inductive logic programming [12] and answer set programming

[3]. These approaches are based on fast solvers that work very well with unit cost

parameters.

2. Search-based solvers. On the other hand, many recent solvers are search-based.

Some are variants of A* over a global search space – all possibilities how to place

agents into the nodes of the graph [9]. Other make use of novel search trees [7,2,

6].

3 Flow Model

The Flow model is motivated by the model for the closely related problem of multiple-

origin multiple-destination problem [1]. The model consists of two parts, a logical one

and a numerical one. The logical part describes a valid path for each package using the

idea of network flows. The numerical part describes temporal and resource constraints,

namely that paths for different packages do not overlap in time and space.

3.1 The Logical Part (Modeling Paths)

For each package p ∈ P and for each arc a ∈ E we introduce a Boolean decision variable

Used [a, p] that indicates whether or not arc a is used to transport package p. For each

package p ∈ P and for each vertex x ∈ V a Boolean variable Flow [x , p] indicates

whether or not the transport of package p goes through the vertex x.

To model a transport path for a package we specify the flow preservation con-

straints. These constraints describe that each package must leave its origin and must

arrive at its destination, and if the package goes through some vertex then it must en-

ter the vertex and leave it (both exactly once). In the case of origin, the package only

leaves it and, similarly, in the case of destination, the package only enters it. Formally,

for each package p ∈ P we introduce the following flow preservation constraints (recall

that domains of all the variables are Boolean, that is, {0, 1}):

∀a ∈ InArcs(orig(p)) : Used [a, p] = 0 (1)

∀a ∈ OutArcs(dest(p)) : Used [a, p] = 0 (2)

Flow [orig(p), p] = 1 (3)

Flow [dest(p), p] = 1 (4)

∀x ∈ V \ {orig(p)} :
∑

a∈InArcs(x)

Used [a, p] = Flow [x , p] (5)

∀x ∈ V \ {dest(p)} :
∑

a∈OutArcs(x)

Used [a, p] = Flow [x , p] (6)

3.2 The Numerical Part (Modeling Nodes as Resources)

The numerical part specifies non-overlapping constraints, namely two packages do not

meet at the same node at the same time, and travel time between the nodes that is

expressed by weights of arcs. To model the time interval when a package p ∈ P stays in

a node x ∈ V , we introduce two numerical variables InT [x, p] and OutT [x, p] modeling

the time when the package enters the node and when it leaves the node respectively.

We can describe the travel time of package p between the nodes x and y through the

arc a as follows:

Used [a, p]⇒ OutT [x , p] + w(a) = InT [y , p]. (7)

If the package p is going through the node x then the package cannot enter the node

before it leaves it:

InT [x , p] ≤ OutT [x , p]. (8)

Let sp(x, y) be the length of the shortest path from node x to node y. Then we can

calculate bounds of the time variables as follows:

∀x ∈ V \ {orig(p)} : Flow [x , p]⇒ OutT [orig(p), p] + sp(orig(p), x) ≤ InT [x , p] (9)

∀x ∈ V \ {dest(p)} : Flow [x , p]⇒ OutT [x , p] + sp(x , dest(p)) ≤ InT [dest(p), p] (10)

Let MKSP be the time when each package must be in its destination - it corresponds

to makespan of the schedule. Then we set the times in package’s origin and destination

as follows:

InT [orig(p), p] = 0 (11)

OutT [dest(p), p] = MKSP (12)

Finally, to model that two packages p1 and p2 do not meet at the same node x, we

need to specify that their times of visit do not overlap:

(Flow [x , p1] ∧ Flow [x , p2])⇒ (OutT [x , p1] < InT [x , p2] ∨OutT [x , p2] < InT [x , p1])

(13)

3.3 Model Soundness

It is easy to prove that the Flow model is sound, that is, every consistent instantiation

of variables defines a solution to the MAPF problem. The constraints (1)-(6) define a

single path from origin to destination for each package, i.e., the variables Flow and Used

are equal to one for nodes and arcs used on the path and equal to zero for all other nodes

and arcs. The origin and destination must be on the path due to constraints (3) and

(4). The path must continue from origin due to (6) and must reach the destination due

to (5). The path cannot start and cannot finish in any other node due to constraints

(5) and (6). The flow constraints allow a loop to be formed in the graph, but such

loops are forbidden by temporal constraints (7) and (8). Each package starts its tour

at time zero (11) and finishes at time MKSP (12) and two packages cannot meet at the

same node at the same time due to constraint (13). Hence each solution to the above

constraint satisfaction problem defines conflict free paths for all packages.

4 Path Model

The disjunctive non-overlap constraint (13) from the Flow model is a classical expres-

sion of a unary (disjunctive) resource. In constraint programming, these disjunctive

constraints are known to propagate badly and special global constraints modeling re-

sources have been proposed [11]. Hence it seems natural to exploit such constraints in

a model, where the presence of a package at a node is modeled as an activity. These

activities must be connected via temporal constraint to define a path from origin to

destination.

Formally, for each package p ∈ P and each node x ∈ V , we introduce an ac-

tivity N [x, p] describing time that the package p spends in the node x. We denote

StartOf(N [x, p]) the start time of the activity - it corresponds to InT [x, p] in the

Flow model - and similarly EndOf(N [x, p]) denotes the end time of activity corre-

sponding to OutT [x, p] in the Flow model. The start time of activity corresponding to

the origin of the package is set to zero, while the end time of activity corresponding to

the destination of the package is set to MKSP , which is the makespan of the schedule:

StartOf (N [orig(p), p]) = 0 (14)

EndOf (N [dest(p), p]) = MKSP . (15)

4.1 The Path Part

To model the path from origin to destination, we will use a double-link model describing

predecessors and successors of activities. The real path will be completed to form a

loop by assuming that the origin directly follows the destination. The activities (nodes)

that are not used in the path will form self-loops (the node will be its own predecessor

and successor).

Formally, for each package p ∈ P and for each node x ∈ V we will use two variables

Prev[x, p] and Next[x, p] describing the predecessor and successor of node x on the

path of package p. The domain of the variable Prev[x, p] consists of all nodes y such

that (y, x) ∈ E plus the node x. Similarly, the domain of variable Next[x, p] consists

of nodes z such that (x, z) ∈ E plus the node x. To ensure that the variables are

instantiated consistently, we introduce the constraint:

Prev [x , p] = y ⇔ Next [y , p] = x . (16)

To close the loop, we will use the following constraints:

Prev [orig(p), p] = dest(p) (17)

Next [dest(p), p] = orig(p). (18)

It remains to connect information about the path with the activities over the path,

namely to properly connect times of the activities so they are ordered correctly in time.

This will be realized by the constraint:

EndOf (N [x , p]) + w(x ,Next [x , p]) = StartOf (N [Next [x , p], p]), (19)

where w(x, y) is the length of arc from x to y. We set

w(x, x) = −1 (20)

w(dest(p), orig(p)) = −MKSP . (21)

In order to prune the search space, we add for all x ∈ V \ {orig(p)} the following

constraints:

Next [x , p] 6= x ⇒ EndOf (N [orig(p), p]) + sp(orig(p), x) ≤ StartOf (N [x , p]), (22)

and for all x ∈ V \ {dest(p)}, we add:

Next [x , p] 6= x ⇒ EndOf (N [x , p]) + sp(x , dest(p)) ≤ StartOf (N [dest(p), p]). (23)

4.2 The Resource Part

For each node x ∈ V , we add the following constraint encoding that the visits of the

node x are not overlapping:

NoOverlap(
⋃
p∈P

N [x , p]). (24)

4.3 Model Soundness

Any solution to the Path constraint model defines a solution of the MAPF problem and

vice versa. For each package, each node (activity) has some predecessor and successor

and they are defined consistently thanks to constraint (16), i.e., if x is a predecessor

of y then y is the successor of x. It means that all nodes of the graph are covered by

loops. Moreover, the origin and destination nodes are part of the same loop due to

constraints (17) and (18). All other loops must be of length one due to constraints (19)

and (20). Note that durations of activities are only restricted to be positive numbers

and as regular arcs also have positive lengths, the only way to satisfy the constraints

(19) over the loop is to include an arc with a negative length. Only the arcs (x, x)

and (dest(p), orig(p)) have negative lengths as specified in constraints (20) and (21).

Finally, each path starts at time zero (14) and finishes at time MKSP (15) and no

two paths overlap at any node at any time due to constraint (24). Note that activities

that are not used at any path (they are part of loops of length one) are still allocated

to unary resource modeling the node. The duration of such activities is one due to

constraints (19) and (20). However, as their start and end times are not restricted by

bounds 0 and MKSP , such activities can be shifted to future (after MKSP).

5 Opt Model

The Path model uses classical activities. Some of them are used on the packages’ paths

from origins to destinations, while others are not necessary (those that are part of

loops of length one). These are dummy activities that are part of the model as we do

not know in advance which activities will be necessary (which nodes will be visited).

In scheduling there exists a concept of optional activities that is used to model exactly

the same problem. We will exploit optional activities in the Opt model. Now, unlike

in the Path model, we do not use variables Next and Prev in order to find the path,

but the succeeding and preceding nodes will be entailed by whether or not an activity

corresponding to the arc and the package is present. All the activities in this model

are optional.

Formally, for each package p ∈ P and each node x ∈ V , we introduce three optional

activities N [x, p], Nout [x, p], and N in [x, p]. As in the Path model, the activity N [x, p]

corresponds to the time of a package p spent at node x. The activities N in [x, p] and

Nout [x, p] describe the time spent in the incoming and outgoing arcs. Next, for each

package p ∈ P and each arc (x, y) ∈ E, we introduce an optional activity A[x, y, p].

Again, we use an integer variable MKSP to denote the end of schedule (makespan).

5.1 The Path Part

The idea is that the path of a package corresponds to the activities that are present

in the solution and that in turn correspond to the nodes and arcs in the path. In

the terminology of hierarchical scheduling, it can be conceived such that each activity

Nout [x, p] has the activities A[x, y, p] corresponding to the arcs outgoing from the node

x as its children, and symmetrically, N in [x, p] has the activities A[y, x, p] corresponding

to the arcs incoming to the node x as its children. Hence each activity A[x, y, p] has

two parents: Nout [x, p] and N in [y, p] as the arc (x, y) is an outgoing arc for node x

and an incoming arc for node y.

Formally, for each package p ∈ P , the following logical constraints are introduced:

PresenceOf (N [orig(p), p]) = 1 (25)

PresenceOf (N [dest(p), p]) = 1 (26)

PresenceOf (N in [orig(p), p]) = 0 (27)

PresenceOf (N out [dest(p), p]) = 0 (28)

∀x ∈ V \ {orig(p)} : PresenceOf (N [x , p])⇔ PresenceOf (N in [x , p]) (29)

∀x ∈ V \ {dest(p)} : PresenceOf (N [x , p])⇔ PresenceOf (N out [x , p]) (30)

∀x ∈ V \ {orig(p)} : Alternative(N in [x , p],
⋃

(y,x)∈E

A[y , x , p]) (31)

∀x ∈ V \ {dest(p)} : Alternative(N out [x , p],
⋃

(x ,y)∈E

A[x , y , p]) (32)

The constraint Alternative enforces that if the activity given as the first argument is

present, then exactly one activity from the set of activities given as the second argument

is present; otherwise no activity from the set is present. In addition, it ensures that the

start and end times of the present activities are equivalent. Since this implication goes

only in one direction, we have to impose the following constraints in order to find the

path:

∀(x , y) ∈ E : PresenceOf (A[x , y , p])⇒ PresenceOf (N in [y , p]) (33)

∀(x , y) ∈ E : PresenceOf (A[x , y , p])⇒ PresenceOf (N out [x , p]) (34)

The processing times of activities A[x, y, p] are fixed to the weights of the arcs w(x, y),

whereas the processing times of activities N , Nout , and N in are to be found. Thanks to

the Alternative constraints, the processing times of activities Nout and N in will span

over the child activity A that will be present, and for the rest, the following constraints

need to be added:

∀x ∈ V \ {orig(p)} : StartOf (N [x , p]) = EndOf (N in [x , p]) (35)

∀x ∈ V \ {dest(p)} : EndOf (N [x , p]) = StartOf (N out [x , p]) (36)

StartOf (N [orig(p), p]) = 0 (37)

EndOf (N [dest(p), p]) = MKSP (38)

Again, in order to prune the search space, we add the following constraints:

∀x ∈ V \ {orig(p)} : EndOf (N [orig(p), p]) + sp(orig(p), x) ≤ StartOf (N [x , p]) (39)

∀x ∈ V \ {dest(p)} : EndOf (N [x , p]) + sp(x , dest(p)) ≤ StartOf (N [dest(p), p]) (40)

5.2 The Resource Part

Exactly as in the Path model, we need to introduce the constraint precluding the

packages from occurring at the same node at the same time, that is, for each node

x ∈ V , we add:

NoOverlap(
⋃
p∈P

N [x , p]) (41)

5.3 Model Soundness

The solution of the Opt constraint model consists of selection of activities and their

time allocation. The activities corresponding to origins and destinations of packages

must be selected due to constraints (25) and (26). The constraints (29)-(34) ensure

that if a node is used on some path then there must be exactly one incoming and

one outgoing arc selected (except for the origin, where no incoming arc is used due

to (27), and for the destination where no outgoing arc is selected due to (28)). No

activity outside the path is selected as such activities would have to form a loop due to

constraints (29)-(34), but that would violate the temporal constraints (35) and (36).

Finally, each path starts at time zero (37) and finishes at time MKSP (38) and activities

in nodes are not overlapping (41).

6 Experimental Results

We implemented the models in the IBM CP Optimizer version 12.7.1 [5]. The only

parameters that we adjusted are DefaultInferenceLevel, which was set to Extended,

and Workers, which we set to 1. The experiments were run on a Dell PC with an

Intel R© CoreTM i7-4610M processor running at 3.00 GHz with 16 GB of RAM. We use

a cutoff time of 100 seconds per problem instance.

6.1 Implementation Details

For all three models, we compute the all-pairs-shortest-path matrix sp using the Floyd-

Warshall algorithm [4] as the preprocessing phase. We set the lower bound on makespan

to be the longest path of the packages’ shortest paths from their origins to their des-

tinations, and the upper bound on makespan UB is set to be the sum of the shortest

paths from the origins to the destinations of all the packages. Further, if for a package

p ∈ P and a node x ∈ V , sp(orig(p), x) > UB , it means that the node x cannot be

passed through by the package p, and thus we omit creating variables associated with

the node x and the package p.

To represent the activities in the Path model and the Opt model, we use the Interval

Variables of the CP Optimizer, which are tailored for the scheduling problems and

support specialized constraints such as Alternative and NoOverlap. The only issue is

that the NoOverlap constraint works with non-strict inequalities, whereas if a package

leaves a node at time t, another package is allowed to enter the same node no sooner

than at time t + 1. In fact, the times spent by packages at nodes are mostly zero-

length. Hence, the NoOverlap constraint is given a so-called Transition Distance matrix

containing all ones, which ensures that the time distances between two consecutive

visits of a node are at least one. Consequently, instead of constraint (20) in the Path

model, we set w(x, x) = 0, and as we omit the constraints (19) between the nodes

dest(p) and orig(p), the constraints (21) can be also omitted.

The bounds of the intervals and other time variables are limited using the sp matrix.

Note that in the Path model, all the intervals must be scheduled and non-overlapping

even when the package is not passing through the associated node, so that we use the

time upper bound UB + |P |.
As to the implementation of the constraints (19) in the Path model, one option is

to use the specialized Element constraint. Another option is to use constraints in the

form of implications for each possible value of Next[x, p]:

Next [x , p] = y ⇒ EndOf (N [x , p]) + w(x , y) = StartOf (N [y , p])

The implications turned out to be much more efficient than using the Element con-

straint so that the implications are used in the experiments.

We also tested the models without the constraints for pruning the search space (9)-

(10), (22)-(23), and (39)-(40), which led to increase in average runtime for the Flow,

Path, and Opt model roughly by 26 %, 37 %, and 20 %, respectively. For the Path

model, we also tried adding the constraints Next[x, p] = x⇔ StartOf(N [x, p]) ≥ UB ,

which turned out to be counterproductive.

6.2 Problem Instances

The problem instances are simple four connected grid maps with unit-length edges. To

ensure interaction between agents, impassable walls are introduced in the grid graph.

These walls create two types of graphs - a grid that has an obstacle in the middle that

the agents have to go around, and a grid that has a bottleneck that the agents have

to squeeze through. To create different complexity of the instances we incrementally

increase the grid size from 5 by 5 to 9 by 9 as well as we vary the number of agents

from 2 to 9 for each size of the graph.

Different origin and destination positions are also included in the experiments.

Both can be either randomly scattered across the whole graph or grouped in one place.

This yields four different combinations of origin and destination positions. Each of the

instances described above was generated multiple times. In total, we generated 1600

instances.

6.3 The Results

The Figure 1 shows the overall comparison in the form of a cactus graph. It shows the

number of problems solved (x-axis) within a given time (y-axis). For simple instances,

the Flow model is the best one. Then the middle complexity instances are solved best

by the Path model, but the overall winner is the Opt model that can solve the largest

number of instances. This is an interesting behavior, in particular, that the Flow model

is better than the Path model for simpler and for more complex instances, but not for

the middle-complexity instances.

We compared the models also based on parameters of the instances. Recall, that

two types of worlds (maps) were generated - one with an obstacle to go around it

1

10

100

1000

10000

100000

1000000

1 35 69 10
3

13
7

17
1

20
5

23
9

27
3

30
7

34
1

37
5

40
9

44
3

47
7

51
1

54
5

57
9

61
3

64
7

68
1

71
5

74
9

78
3

81
7

85
1

88
5

91
9

95
3

98
7

10
21

10
55

10
89

11
23

11
57

11
91

12
25

12
59

12
93

13
27

13
61

13
95

14
29

14
63

14
97

15
31

15
65

15
99

Opt
Flow
Path

Fig. 1 Dependence of the number of problems solved on time (logarithmic scale; time mea-
sured in milliseconds).

and one with a bottleneck that the agents have to squeeze through. Figure 2 shows

the comparison in the form a cactus graph. The Opt model is overall the best model

independently of the map. The bottleneck maps seem to favor the Flow model over

the Path though the trend for the obstacle maps seems similar and maybe if a larger

cutoff time is used, the behavior of models will be similar.

1

10

100

1000

10000

100000

1000000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

Obstacle

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

47
6

49
5

51
4

53
3

55
2

57
1

59
0

60
9

62
8

64
7

66
6

68
5

70
4

72
3

74
2

76
1

78
0

79
9

Bottleneck

Opt

Flow

Path

Fig. 2 Dependence of the number of problems solved on time for two types of maps (loga-
rithmic scale; time measured in milliseconds).

We also studied the behavior of models based on the size of instances. The size

can be measured by the size of the map or by the number of agents. Figure 3 shows

the comparison of models for different sizes of maps. It is clear that for small maps,

the Flow model works very well but as the size increases the Path model works better.

Again, the Opt model demonstrates the most stable behavior. Regarding the number

of agents, it seems that the behavior of models corresponds to the overall behavior and

the number of agents does not favor any of the models. Figure 4 shows the comparison

for selected numbers of agents.

1

10

100

1000

10000

100000

1000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

29
5

30
2

30
9

31
6

5x5

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

29
5

30
2

30
9

31
6

6x6

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

29
5

30
2

30
9

31
6

7x7

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

29
5

30
2

30
9

31
6

8x8

Opt

Flow

Path

Fig. 3 Dependence of the number of problems solved on time for different sizes of maps
(logarithmic scale; time measured in milliseconds).

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	3

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	5

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	7

Opt

Flow

Path

1

10

100

1000

10000

100000

1000000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

Agents	9

Opt

Flow

Path

Fig. 4 Dependence of the number of problems solved on time for different numbers of agents
(logarithmic scale; time measured in milliseconds).

7 Conclusions

In this paper, we proposed three scheduling models for multi-agent path finding prob-

lems. The major motivation was to exploit techniques developed for scheduling prob-

lems in a new area, where they have not been used so far. This should allow easier

solving of more realistic problems with various resource and temporal constraints such

as non-uniform distances between the nodes and various capacities of nodes (and arcs).

The model with optional activities seems the most stable, in particular when the prob-

lems are becoming larger. There is an interesting behavior of the Flow model, which is

the best for small instances, then it is the worst model for middle-size instances, but

the runtime increase seems smaller for larger instances in comparison to other models.

This model is more influenced by the size of the graph than the other two models.

There is one significant restriction of the presented models - no agent (package)

can return to any node. A future research can study how to extend the models to allow

re-visits of the nodes, which is supported by existing solving approaches to MAPF.

Acknowledgements Research is supported by the Czech-Israeli Cooperative Scientific Re-
search Project 8G15027 and by the Czech Science Foundation under the project P202/12/G061.

References

1. Roman Barták, Agostino Dovier, Neng-Fa Zhou, Multiple-Origin-Multiple-Destination Path
Finding with Minimal Arc Usage: Complexity and Models. ICTAI 2016: 91-97 (2016)

2. Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, Solomon
Eyal Shimony, ICBS: Improved Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. IJCAI (2015)

3. Esra Erdem, Doga Gizem Kisa, Umut Öztok, Peter Schüller, A General Formal Framework
for Pathfinding Problems with Multiple Agents. AAAI (2013)

4. Robert W. Floyd, Algorithm 97: shortest path, Communications of the ACM 5.6 (1962)
5. Philippe Laborie, IBM ILOG CP Optimizer for detailed scheduling illustrated on three

problems, International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, Springer, Berlin, Heidelberg, 148-162 (2009)

6. Guni Sharon, Roni Stern, Meir Goldenberg, Ariel Felner, The increasing cost tree search
for optimal multi-agent pathfinding. Artif. Intell. 195: 470-495 (2013)

7. Guni Sharon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, Conflict-based search for
optimal multi-agent pathfinding. Artif. Intell. 219: 40-66 (2015)

8. David Silver, Cooperative Pathfinding. AIIDE 2005: 117-122 (2005)
9. Trevor Scott Standley, Finding Optimal Solutions to Cooperative Pathfinding Problems.

AAAI (2010)
10. Pavel Surynek, Towards optimal cooperative path planning in hard setups through satis-

fiability solving, PRICAI, 564576, (2012)
11. Petr Viĺım, Roman Barták, Ondřej Čepek, Extension of O(n log n) filtering algorithms for

the unary resource constraint to optional activities, Constraints 10.4: 403-425, (2005)
12. Ko-Hsin Cindy Wang, Adi Botea, MAPP: a Scalable Multi-Agent Path Planning Algo-

rithm with Tractability and Completeness Guarantees. J. Artif. Intell. Res. 42: 55-90 (2011)

