
Multi-agent Pathfinding on Large Maps Using Graph Pruning:
This Way or That Way? (Extended Abstract)*

Jiřı́ Švancara,1 Philipp Obermeier,2,3 Matej Husár,1 Roman Barták,1 Torsten Schaub2,3

1 Charles University, Prague, Czech Republic
2 University of Potsdam, Potsdam, Germany

3 Potassco Solutions, Potsdam, Germany
svancara@ktiml.mff.cuni.cz, phil@cs.uni-potsdam.de, husarmatej@gmail.com, bartak@ktiml.mff.cuni.cz,

torsten@cs.uni-potsdam.de

Abstract
This paper extends a study on improving the performance
of reduction-based solvers for the problem of multi-agent
pathfinding. The task is to navigate a set of agents in a graph
without collisions. Solvers that reduce this problem to other
formalisms often have issues scaling to larger instances in
terms of the graph size. A previous study suggests that prun-
ing the graph of most vertices based on a randomly chosen
shortest path for each agent. In this paper, we study the effect
of different choices of these paths.

Introduction
The task of navigating a set of agents has numerous practical
applications in robotics, logistics, automatic warehousing,
and more. The theoretical abstraction of this task is Multi-
agent Pathfinding (MAPF) where a set of agents moves dis-
cretely in a shared environment represented by a graph (Sil-
ver 2005). In this paper, we furthermore focus on finding a
plan of the shortest length (i.e. minimizing the makespan,
which is an NP-Hard problem (Yu and LaValle 2013)).

A common technique for solving MAPF optimally is to
reduce it to another problem - most often SAT (Surynek
2016; Barták and Svancara 2019) or ASP (Erdem et al.
2013; Gebser et al. 2018). This type of solver suffers from
instances where the underlying graph is large. The posi-
tion of an agent is modeled by a variable representing a
triple (Agent, Position, T ime), hence there is a blowup
of the number of variables introduced to the solver. On the
other hand, reduction-based solvers are successful on small
and dense instances where the other popular approach - the
search-based solvers (Sharon et al. 2012) - fails.

A previous study (Husár et al. 2022) suggested pruning
large graphs of vertices that are likely unnecessary to solve
the instance, thus lowering the number of variables created.
The pruning is performed based on a randomly chosen short-
est path for each agent, and only vertices near that path are
taken into consideration. In this study, we extend that paper
by exploring the effect of choosing multiple shortest paths
for each agent and different ways to choose these paths.

*The original study was published at AAMAS 2022 (Husár
et al. 2022).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b) (c)

Figure 1: (a) Motivation for pruning the graph. (b) Pruned
graph. (c) Example where C finds suboptimal solution.

Graph Pruning for Reduction-based Solvers
In this paper, we describe the basic motivation and the strate-
gies of graph pruning, but for the full report and proofs, we
refer the reader to the original paper (Husár et al. 2022).

Motivation
A motivation for pruning graph can be seen in Figures (1a)
and (1b) where an agent travels diagonally on a grid map.
There are numerous paths the agent can take which may
overwhelm the underlying solver. By pruning vertices out-
side of one random shortest path, the solver’s search be-
comes much easier.

On the other hand, removing vertices may make the in-
stance unsolvable if the vertices outside of the shortest paths
are needed to ensure that the agents do not collide. For
this reason, several strategies that iterate which vertices are
pruned are proposed.

Pruning Strategies
The instance is created over a restricted graph Gk meaning
that only vertices of distance at most k from a single random
shortest path for each agent are used. To find the optimal
makespan, we start with some lowerbound T and if there is
no solution, we increase T by 1.

Baseline strategy (B) considers the whole graph and iter-
atively increases T . This is a commonly used approach that
is complete and optimal.

Makespan-add strategy (M) considers G1 and iteratively
increases T . This strategy is neither complete nor optimal,
as we may have deleted vertices necessary for a solution.

B
P C M

type SP AP RP DP SP AP RP DP SP AP RP DP

Used
vertices

empty 1,00 0,14 0,23 0,21 0,23 0,15 0,24 0,22 0,23 0,19 0,24 0,23 0,24
maze 1,00 0,18 0,20 0,18 0,19 0,20 0,22 0,21 0,21 0,22 0,22 0,22 0,22
random 1,00 0,19 0,27 0,24 0,25 0,22 0,30 0,28 0,29 0,25 0,31 0,30 0,31
room 1,00 0,21 0,24 0,22 0,22 0,23 0,27 0,25 0,25 0,24 0,29 0,27 0,28

Solved
instances

empty 0,78 0,99 0,81 0,84 0,82 1,00 0,81 0,84 0,82 0,87 0,81 0,82 0,80
maze 0,85 0,87 0,88 0,87 0,87 0,98 0,97 0,97 0,98 0,94 0,94 0,94 0,94
random 0,79 0,91 0,82 0,84 0,84 1,00 0,89 0,92 0,91 0,93 0,87 0,89 0,88
room 0,80 0,83 0,81 0,82 0,82 0,97 0,92 0,95 0,94 0,89 0,89 0,89 0,89

Table 1: Ratio of used vertices, ratio of solved instances. The results are split by the map type.

Prune-and-cut strategy (P) starts with Gk, k = 0 and iter-
atively increases k. If there is still no solution with the whole
graph, T needs to be increased and k = 0 is set again. This
strategy is both complete and optimal.

Combined strategy (C) improves P by increasing both
k and T at the same time, skipping many iterations. C is
still complete but no longer optimal, as can be seen in Fig-
ure (1c), if the blue path is chosen at random.

Choosing Shortest Paths
The strategies may suffer from poor choices of the shortest
paths (if there are multiple) as was demonstrated for strat-
egy combined. To mitigate this, we introduce 4 approaches
for choosing paths (union of vertices on those paths), over
which Gk is built.

Single-path approach (SP) is the one previously used. SP
considers only a single random shortest path for each agent.

All-paths approach (AP) tries to avoid example from Fig-
ure (1c) by considering all shortest paths for each agent. In-
deed, such an example is no longer possible for the price of
pruning fewer vertices. For example, no vertex is pruned in
Figure (1a) by using AP.

Random-paths approach (RP) improves AP by consid-
ering only a random subset of the shortest paths to decrease
the number of vertices while still giving the solver more op-
tions. The number of paths we consider is computed as |AP|

|SP| ,
meaning the ratio of vertices on the union of all shortest
paths and the number of vertices on a single shortest path.

Distant-paths approach (DP) further improves RP
which may suffer from poorly choosing the subset of the
shortest paths. Ideally, we prefer to choose paths that are di-
verse (not sharing many edges) and distant (the distance be-
tween vertices on the chosen paths is maximized). There is
a polynomial algorithm that chooses diverse shortest paths
but not distant (Hanaka et al. 2021). There is also an al-
gorithm that finds near-optimal most distant paths (Häcker
et al. 2021), but the problem is NP-Hard which is not de-
sirable for a preprocessing function. Our proposed approach
heuristically builds the paths iteratively. At each step, we try
to add a new vertex to the currently built path and if there are
multiple choices, we pick one that maximizes the minimal
distance to all of the vertices currently on the found paths.
Since this is just a heuristic, some examples make us choose

an undesirable path because the approach greedily chooses
the next vertex on the path without knowledge of the rest of
the map. To mitigate this, we start to build the path from a
different vertex rather than from the endpoints of the path.

Experiments

To test and compare the approaches to choosing the shortest
paths, we performed a set of experiments on the commonly
used benchmark set (Stern et al. 2019). The reduction-
based solver used was an ASP encoding (Gebser et al.
2018) for which we used the grounding-and-solving sys-
tem clingo (Kaminski et al. 2020) version 5.5.2. We ran
the experiments on an Intel Xeon E5-2650v4 under De-
bian GNU/Linux 9, with each instance limited to 300s pro-
cessing time and 28 GB of memory. The full implementa-
tion and results are available at https://github.com/
potassco/mapf-subgraph-system.

Based on the results presented in Table 1, we observe that,
unsurprisingly, using more than a single shortest path leads
to an increase in the number of vertices in the restricted
graph. This increase is more prominent in maps, where mul-
tiple shortest paths between two points exist. For example,
for map type maze the difference is smaller.

The number of used vertices, thus the number of vari-
ables, is reflected in the runtime of the solver, and conse-
quently in the number of solved instances within the time-
out. The SP approach is the most successful in most cases,
except for the maze maps, where the difference is much less
prominent and for the P strategy AP outperforms SP.

We conclude that 1) the initial motivation of pruning the
graph as much as possible to improve the computation time
is valid, and 2) considering more than a single shortest path
usually does not lead to better performance.

On the other hand, we also observed that considering
more paths leads to obtaining better plans for the sub-
optimal strategies C and M. The best approach in this aspect
is naturally AP with DP and RP not far behind. Consid-
ering SP and AP, the number of times C finds an optimal
solution increases from 93% to 100%, 91% to 94%, 89% to
97%, and 86% to 93% for map types empty, maze, random,
and room, respectively.

Acknowledgments
Research is supported by project P103-19-02183S of the
Czech Science Foundation, the Czech-USA Cooperative
Scientific Research Project LTAUSA19072, and DFG grant
SCHA 550/15, Germany.

References
Barták, R.; and Svancara, J. 2019. On SAT-Based Ap-
proaches for Multi-Agent Path Finding with the Sum-of-
Costs Objective. In Surynek, P.; and Yeoh, W., eds., Pro-
ceedings of the Twelfth International Symposium on Combi-
natorial Search, SOCS 2019, Napa, California, 16-17 July
2019, 10–17. AAAI Press.
Erdem, E.; Kisa, D. G.; Öztok, U.; and Schüller, P. 2013. A
General Formal Framework for Pathfinding Problems with
Multiple Agents. In desJardins, M.; and Littman, M. L., eds.,
Proceedings of the Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence, July 14-18, 2013, Bellevue, Washington,
USA. AAAI Press.
Gebser, M.; Obermeier, P.; Otto, T.; Schaub, T.; Sabuncu, O.;
Nguyen, V.; and Son, T. 2018. Experimenting with robotic
intra-logistics domains. Theory and Practice of Logic Pro-
gramming, 18(3-4): 502–519.
Häcker, C.; Bouros, P.; Chondrogiannis, T.; and Althaus,
E. 2021. Most Diverse Near-Shortest Paths. In Meng,
X.; Wang, F.; Lu, C.; Huang, Y.; Shekhar, S.; and Xie, X.,
eds., SIGSPATIAL ’21: 29th International Conference on
Advances in Geographic Information Systems, Virtual Event
/ Beijing, China, November 2-5, 2021, 229–239. ACM.
Hanaka, T.; Kobayashi, Y.; Kurita, K.; Lee, S. W.; and
Otachi, Y. 2021. Computing Diverse Shortest Paths Ef-
ficiently: A Theoretical and Experimental Study. CoRR,
abs/2112.05403.
Husár, M.; Svancara, J.; Obermeier, P.; Barták, R.; and
Schaub, T. 2022. Reduction-based Solving of Multi-agent
Pathfinding on Large Maps Using Graph Pruning. In Fal-
iszewski, P.; Mascardi, V.; Pelachaud, C.; and Taylor, M. E.,
eds., 21st International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2022, Auckland, New
Zealand, May 9-13, 2022, 624–632. International Foun-
dation for Autonomous Agents and Multiagent Systems
(IFAAMAS).
Kaminski, R.; Romero, J.; Schaub, T.; and Wanko, P. 2020.
How to build your own ASP-based system?! CoRR,
abs/2008.06692.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-Based Search For Optimal Multi-Agent Path Find-
ing. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada.
Silver, D. 2005. Cooperative Pathfinding. In Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE), 117–
122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfind-
ing: Definitions, Variants, and Benchmarks. In Surynek, P.;

and Yeoh, W., eds., Proceedings of the Twelfth International
Symposium on Combinatorial Search, SOCS 2019, Napa,
California, 16-17 July 2019, 151–159. AAAI Press.
Surynek, P. 2016. Makespan Optimal Solving of Cooper-
ative Path-Finding via Reductions to Propositional Satisfia-
bility. CoRR, abs/1610.05452.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractabil-
ity of Optimal Multi-Robot Path Planning on Graphs. In
Proceedings of the Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence, July 14-18, 2013, Bellevue, Washington,
USA.

