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ABSTRACT
Multi-agent path finding (MAPF) deals with the problem of finding

a collision-free path for a set of agents. The agents are located at

nodes of a directed graph, they can move over the arcs, and each

agent has its own destination node. It is not possible for two agents

to be at the same node at the same time. The usual setting is that

each arc has length one so at any time step, each agent either stays

in the node, where it is, or moves to one of its neighboring nodes.

This paper suggests to model the MAPF problem using schedul-

ing techniques, namely, nodes and arcs are seen as resources. The

concept of optional activities is used to model which nodes and

arcs an agent will visit. We first describe a model, where each agent

can visit each node at most once. Then, we extend the model to

allow agents re-visiting the nodes.

The major motivation for the scheduling model of MAPF is its

capability to naturally include other constraints. We will study par-

ticularly the problems, where the capacity of arcs can be greater

than one (more agents can use the same arc at the same time), and

the lengths of arcs can be greater than one (moving between dif-

ferent pairs of nodes takes different times). These extensions make

the model closer to reality than the original MAPF formulation. We

compare the efficiency of models experimentally.
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1 INTRODUCTION
There are many practical situations, where a set of agents (robots,

cars, etc.) is moving in a shared environment, while each agent is

heading for its desired goal position. The environment is usually

represented by a graph, where agents can occupy nodes and move

along the arcs [12]. The agents are moving cooperatively to avoid

collisions and unsolvable congestions. The quality of the sequence

of steps leading each agent to the goal position can be measured

by some cost function such as makespan.
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The problem described above is known as multi-agent path find-

ing (MAPF) [6]. Some examples, where the MAPF problem is useful,

include traffic optimization [5, 10], navigation [18], movement in

computer games [20], etc.

The state of the art algorithms for the MAPF problem assume

that all of the arc lengths are identical and that each node and arc

can be occupied by at most one agent at any time. These limitations

on the solved problem do not correspond to the reality in many

cases. For example, some roads have a larger capacity than others.

In this paper, we add new attributes to the problem specification

that bring it closer to the real world.

In particular, we model the MAPF problem in the Constraint

Programming (CP) formalism borrowing ideas from scheduling and

routing problems. We see the nodes and arcs as resources with

limited capacity, which equals one in the typical MAPF setting but

can be larger in some applications. We use the concept of optional

(alternative) activities [8] with specialized global constraints, such

as NoOverlap, modeling resources. The motivation is supporting

richer (in comparison to traditional MAPF) temporal and capacity

constraints.

After formally introducing the classical MAPF problem, we will

propose a core scheduling model that allows each agent to visit each

node at most once (a single-layer model). We will then extend this

model to support multiple visits of each node (a multi-layer model)

that complies with the classical MAPF formulation. After that, we

will generalize the model to support arcs of different lengths and

capacities. While the extension of the proposed scheduling-based

model is straightforward for this extended setting, we will also

present the extension of the classical SAT-based model. The paper

is concluded by experimental comparison of scheduling-based and

SAT-based models with the goal to find how particular problem

attributes influence efficiency of various models.

2 BACKGROUND ON MULTI-AGENT PATH
FINDING

The MAPF problem is formulated by a graph and a set of agents

sitting at certain nodes. The task is to find paths for agents from

their origin nodes to their destination nodes while satisfying some

constraints, namely, no two agents meet at the same node at the

same time, and no two agents swap their positions at one step.

Formally we can define an instance of MAPF as ordered 4-tuple

(G,A, orig, dest), where G = (V ,E) is a directed graph and A is a

set of agents. Functions oriд : A→ V and dest : A→ V describe

origin and destination nodes of an agent. For each agent a ∈ A,
we denote oriд(a) ∈ V the origin location (node) of the agent and

dest(a) ∈ V its destination node.
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The solution of a MAPF problem is a sequence of positions in

time for each agent that satisfies the conditions that no two agents

meet at the same node at the same time, and no two neighboring

agents swap their positions at one step. The moves of the agents are

discrete and synchronous. In this paper, we will focus on solutions

that are makespan optimal – the total time until the last agent

reaches its destination is minimized. This requirement of optimality

makes the MAPF problem NP-hard [11].

The classical MAPF is usually solved by algorithms that can be

divided into two categories:

(1) Reduction-based solvers. Many solvers reduce MAPF to

another known problem such as SAT [17], integer linear

programming [21], and answer set programming [3]. These

approaches are based on fast solvers that work very well

with unit cost parameters.

(2) Search-based solvers. On the other hand, many recent

solvers are search-based. Some are variants of A* over a

global search space – all possibilities how to place agents

into the nodes of the graph [15]. Other make use of novel

search trees [2, 13, 14].

All of the above approaches to solving the MAPF problem are de-

signed and tested on graphs with unit-length arcs and unit-capacity

arcs and nodes.

3 SCHEDULING MODEL
This section gives a scheduling-based model for the classical MAPF

with unit lengths and unit capacities. For the sake of simplicity, we

first describe the model restricted such that no agent can visit the

same node more than once. Then, we will show how to eliminate

this restriction.

The requirement that agents do not meet at a node at the same

time leads to a classical expression of a unary (disjunctive) re-

source. In constraint programming, these disjunctive constraints

are known to propagate badly and special global constraints model-

ing resources and efficient filtering algorithms have been proposed

[19]. Hence it seems natural to exploit such constraints in a model,

where the presence of an agent at a node is modeled as an activ-

ity. Activity can be conceived as an interval variable whose start

time and end time are denoted by predicates StartO f and EndO f ,
and the difference between the end time and the start time of the

activity can be set using predicate LenдthO f .
We will exploit the concept of optional activities [8], which is

widely used in scheduling. Again, an optional activity can be con-

ceived as an optional interval variable that can be set to be present

or absent. The predicate PresenceO f is used to determine whether

or not the activity is present in the resulting schedule. The succeed-

ing and preceding nodes in a path of an agent will be entailed by

whether or not an activity corresponding to the arc and the agent is

present. The activities must be connected via temporal constraint

to define a path from the origin to the destination.

3.1 Single-Layer Model
Formally, for each agent a ∈ A and each node x ∈ V , we introduce

three optional activities N [x ,a], N out [x ,a], and N in[x ,a]. The ac-
tivity N [x ,a] corresponds to the time of an agent a spent at node

x . The activities N in[x ,a] and N out [x ,a] describe the time spent

in the incoming and outgoing arcs. Next, for each agent a ∈ A
and each arc (x ,y) ∈ E, we introduce an optional activity A[x ,y,a].
Notice that all the activities in the model are optional. Finally, we

introduce an integer variable MKSP to denote the end of schedule

(makespan).

The idea is that the path of an agent corresponds to the activities

that are present in the solution and that in turn correspond to

the nodes and arcs in the path. In the terminology of hierarchical

scheduling, it can be conceived such that each activity N out [x ,a]
has activities A[x ,y,a] corresponding to the arcs outgoing from

the node x as its children, and symmetrically, N in[x ,a] has the
activities A[y,x ,a] corresponding to the arcs incoming to the node

x as its children. Hence, each activity A[x ,y,a] has two parents:

N out [x ,a] and N in[y,a] because the arc (x ,y) is an outgoing arc

for node x and an incoming arc for node y.
Formally, for each agent a ∈ A, the following logical constraints

are introduced:

PresenceOf (N [orig(a), a]) = 1 (1)

PresenceOf (N [dest(a), a]) = 1 (2)

PresenceOf (N in[orig(a), a]) = 0 (3)

PresenceOf (N out [dest(a), a]) = 0 (4)

∀x ∈ V \ {orig(a)} : PresenceOf (N [x, a]) ⇔ PresenceOf (N in[x, a])
(5)

∀x ∈ V \ {dest(a)} : PresenceOf (N [x, a]) ⇔ PresenceOf (N out [x, a])
(6)

∀x ∈ V \ {orig(a)} : Alternative
(
N in[x, a],

⋃
(y,x)∈E

A[y, x, a]
)

(7)

∀x ∈ V \ {dest(a)} : Alternative
(
N out [x, a],

⋃
(x,y)∈E

A[x, y, a]
)
(8)

The definition of the Alternative constraint, which gets an in-

terval variable as the first argument and a set of interval variables

as the second argument, is as follows. If the activity given as the

first argument is present, then exactly one activity from the set of

activities given as the second argument is present. In addition, it

ensures that the start times and end times of the present activities

are equal. Since this implication goes only in one direction, we have

to impose the following implication constraints in order to find a

correct path, for each agent a ∈ A:
∀(x, y) ∈ E : PresenceOf (A[x, y, a]) ⇒ PresenceOf (N in[y, a]) (9)

∀(x, y) ∈ E : PresenceOf (A[x, y, a]) ⇒ PresenceOf (N out [x, a])
(10)

The durations of activities N , N out
, and N in

are to be found,

whereas the durations of activities A[x ,y,a] are fixed to 1, i.e.,

LenдthO f (A[x ,y,a]) = 1. Thanks to the Alternative constraints,

the processing times of activities N out
and N in

will span over the

child activity A that will be present, and for the rest, the following

constraints need to be added, for each agent a ∈ A:
StartOf (N [orig(a), a]) = 0 (11)

EndOf (N [dest(a), a]) = MKSP (12)

∀x ∈ V \ {orig(a)} : StartOf (N [x, a]) = EndOf (N in[x, a]) (13)

∀x ∈ V \ {dest(a)} : EndOf (N [x, a]) = StartOf (N out [x, a]) (14)

Session 19: Scheduling and Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

749



Note that the equality in constraint (12) is essential for the cor-

rectness of the models. Changing it to an inequality (≤) would mean

that the agent disappears after reaching its destination, and thus

other agents may use that node, which is prohibited in MAPF.

We need to introduce the constraint precluding the agents from

occurring at the same node at the same time, that is, for each node

x ∈ V , we add:

NoOverlap
( ⋃
a∈A

N [x, a]
)

(15)

The NoOverlap constraint on a set of activities states that it

constitutes a chain of non-overlapping activities, any activity in the

chain being constrained to end before the start of the next activity

in the chain. The NoOverlap constraint uses non-strict inequalities.

However, if an agent leaves a node at time t , another agent is al-
lowed to enter the same node no sooner than at time t+1. In fact, the
times spent by agents at nodes are mostly zero (agents go through

the nodes without waiting there). Hence, the NoOverlap constraint

is given a so-called transition distancematrixTDM , which expresses

a minimal delay that must elapse between two successive activities.

More precisely, TDM(N1,N2) gives a minimal allowed time differ-

ence between StartO f (N2) and EndO f (N1). Thus, the constraint
(15) is given a TDM containing value 1 for each ordered pair of

activities from the constraint, which ensures that the time distance

between two consecutive visits of a node is at least one.

To prevent agents from using an arc at the same time (swap), we

add, for each pair of distinct nodes x ,y ∈ V connected by arc:

NoOverlap
( ⋃
a∈A
{A[x, y, a],A[y, x, a]}

)
(16)

In this case, the transition distance matrix is not needed at all

because the default values are 0.

Finally, the objective is tominimize themakespan, i.e.,minMKSP .

Soundness
Proposition 3.1. The single-layer model finds a solution to the

MAPF problem where no agent visits the same node more than once
if and only if such a solution exists.

Proof. The solution of the single-layer model consists of selec-

tion of activities and their time allocation. The activities correspond-

ing to origins and destinations of agents must be selected due to

constraints (1) and (2). The constraints (5)-(10) ensure that if a node

is used on some path then there must be exactly one incoming and

one outgoing arc selected (except for the origin, where no incoming

arc is used due to (3), and for the destination where no outgoing

arc is selected due to (4)). No activity outside the path is selected as

such activities would have to form a loop due to constraints (5)-(10),

but that would violate the temporal constraints (13) and (14). Each

path starts at time zero (11) and finishes at time MKSP (12). Finally,

activities in nodes are not overlapping (15), and agents cannot use

the same arc at the same time (16). □

3.2 Multi-Layer Model
In order to let the agents visit the same nodes repeatedly, we simply

create a copy of the original graph and add extra arcs to enable

transitions between the two graphs. The copies of the original graph

will be henceforth referred to as layers. Assuming there is a node

in which an agent might want to occur at most ℓ-times, we create

ℓ such layers. We will show later how ℓ is chosen.

Formally, all the activities in the model are extended with one

dimension, corresponding to the layer to which the activity belongs.

Now we use N [x ,a,k], N in[x ,a,k], N out [x ,a,k], and A[x ,y,a,k],
where k ∈ {1, . . . , ℓ} corresponds to the layer. To allow the tran-

sitions between two consecutive layers, we introduce for k ∈
{1, . . . , ℓ − 1} : A[x ,x ,a,k], which corresponds to transiting an

agent a from a node x at layerk to the node x at layerk+1. The dura-
tion of activityA[x ,x ,a,k] is set to 0, that is,LenдthO f (A[x ,x ,a,k]) =
0. Note that going through arc A[x ,x ,a,k] is in fact not a move

but merely a transition to another layer. Due to the length 0, an

agent can transit an arbitrary number of layers instantly, which is

necessary to reach the destination in the final layer ℓ (even if the

agent does not re-visit any node).

Also, we need to modify the constraints. The constraints (1)–(8)

are updated, for each agent a ∈ A, to the following constraints:

PresenceOf (N [orig(a), a, 1]) = 1 (17)

PresenceOf (N [dest(a), a, ℓ]) = 1 (18)

PresenceOf (N in[orig(a), a, 1]) = 0 (19)

PresenceOf (N out [dest(a), a, ℓ]) = 0 (20)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ}, x , orig(a) ∨ k , 1 :

PresenceOf (N [x, a, k]) ⇔ PresenceOf (N in[x, a, k]) (21)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ}, x , dest(a) ∨ k , ℓ :
PresenceOf (N [x, a, k]) ⇔ PresenceOf (N out [x, a, k]) (22)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ} :
Alternative(N in[x, a, k], {A[x, x, a, k − 1]} ∪

⋃
(y,x)∈E

A[y, x, a, k])

(23)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ} :
Alternative(N out [x, a, k], {A[x, x, a, k]} ∪

⋃
(x,y)∈E

A[x, y, a, k])

(24)

Note that in order to ease the notational clutter, we neglect the

special cases where the transition arc is not defined, i.e., there is

no transition arc incoming to the first layer (A[x ,x ,a, 0]) and no

transition arc outgoing from the layer ℓ (A[x ,x ,a, ℓ]). Hence the
transition arcs are used (added in the union in constraints (23) and

(24)) only if they are defined.

The constraints (9) and (10) are modified, and extra implications

for transitions are added:

∀(x, y) ∈ E,∀k ∈ {1, . . . , ℓ} :
PresenceOf (A[x, y, a, k]) ⇒ PresenceOf (N in[y, a, k]) (25)

Session 19: Scheduling and Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

750



∀(x, y) ∈ E,∀k ∈ {1, . . . , ℓ} :
PresenceOf (A[x, y, a, k]) ⇒ PresenceOf (N out [x, a, k]) (26)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ − 1} :
PresenceOf (A[x, x, a, k]) ⇒ PresenceOf (N in[x, a, k + 1]) (27)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ − 1} :
PresenceOf (A[x, x, a, k]) ⇒ PresenceOf (N out [x, a, k]) (28)

The constraints (11)–(14) are simply changed to the following

constraints:

StartOf (N [orig(a), a, 1]) = 0 (29)

EndOf (N [dest(a), a, ℓ]) = MKSP (30)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ}, x , orig(a) ∨ k , 1 :

StartOf (N [x, a, k]) = EndOf (N in[x, a, k]) (31)

∀x ∈ V ,∀k ∈ {1, . . . , ℓ}, x , dest(a) ∨ k , ℓ :
EndOf (N [x, a, k]) = StartOf (N out [x, a, k]) (32)

Finally, the constraints (15)–(16) are updated as follows:

NoOverlap
( ⋃

a∈A
k ∈{1, ..., ℓ }

N [x, a, k]
)

(33)

NoOverlap
( ⋃

a∈A
k ∈{1, ..., ℓ }

{A[x, y, a, k],A[y, x, a, k]}
)

(34)

Recall that the NoOverlap constraint over nodes was given the

transition distance matrix TDM ensuring that the time distances

between two consecutive visits of a node are at least one. In this

case, however, we need to distinguish the time distance of two

distinct agents, which must be at least 1, and the time distance of

one agent in distinct layers, which must be allowed to be 0 in order

for an agent to be able to transit an arbitrary number of layers

instantly. More precisely, TDM(N [x ,a,k1],N [x ,a,k2]) = 0, and

TDM(N [x ,a1,k1],N [x ,a2,k2]) = 1, for a1 , a2.
Constraint (34) does not need any transition distance matrix as

the default values 0 are desired.

3.3 Algorithm
We presented a constraint model of the problem for a given number

of layers. We will show now how to bound the number of layers

for a given makespan and then we will present an algorithm for

finding the minimal makespan.

Number of Layers
Proposition 3.2. Let pmin be the shortest path from the origin

node to the destination node of an agent, and letMB be an arbitrary
upper bound on makespan (can be the optimal makespan). Then, to
solve correctly any instance of MAPF problem, it suffices to construct
the model with MB−pmin

2
+ 1 layers. Moreover, this bound cannot be

improved.

Figure 1: Illustration for the proof of Proposition 3.2.

Proof. Theminimum number of nodes that every agent must go

through (excluding its origin node) in order to reach its destination

node is at least pmin . Hence, the maximum number of steps that an

agent can spend on repeating already visited nodes isMB − pmin .

However, in order to visit the same node again, an agent must go

away from that node and go back to that node, which takes at least

two steps. Thus, to get the worst case, an agent has to do cycles

of length two to keep visiting the same node. Hence, in the worst

case, an agent can revisit the same node as many as
MB−pmin

2
times.

Since at least one layer is always required even without repetitions,

we obtain the upper bound
MB−pmin

2
+ 1 on the necessary number

of layers.

To show that this bound cannot be improved, we construct

a problem such that the necessary number of layers equals the

bound (Figure 1). Consider an agent 0 having its destination node

equal to its origin node (oriд(0) = dest(0)), hence pmin = 0, and

agent 1 passing that node so that the agent 0 has to jump back and

forth (out of his origin node and back). Then the agent 0 occurs in

the destination node (including the initial configuration) exactly

MB−pmin
2

+ 1 = 2−0
2
+ 1 = 2 times.

□

When we know how many layers are needed, we can design the

algorithm for solving the MAPF problem. Because all the domains

of variables in Constraint Programming (CP) are finite, we need

to first obtain an upper bound UB on makespan. Hence, before

constructing any model, we first run a polynomial-time algorithm

Push and Swap (PaS) [9], which finds arbitrary solution provided

the problem is solvable (and assuming |A| ≤ |V | − 2), and thus we

obtain a validUB. Now, we could calculate the necessary number of

layers according to Proposition 3.2, but because UB obtained from

PaS is very loose, the number of layers, as well as the sizes of the

domains, would be prohibitively large. That is why we start with

one layer and increase the number of layers until we find a solution.

This solution might not be makespan-optimal, but it provides better

UB which is then used in the final call of the solver that produces a

makespan-optimal solution.

The pseudocode of our approach is depicted in Algorithm 1.

Calling CP(UB, ℓ) stands for the creation of a model for the problem

with ℓ layers and with the upper bound on makespan UB, and
solving it with a CP solver. The result of calling CP, as well as

calling PaS, is the makespan of the solution, or fail if infeasible. In

case of CP, the solution is makespan-optimal with respect to the

number of layers.
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Algorithm 1 Solving MAPF

1: function SolveMAPF

2: UB ← PaS
3: if UB = f ail then
4: return in f easible
5: end if
6: ℓ ← 1

7: RET ← CP(UB, ℓ)
8: while RET = f ail do
9: ℓ ← ℓ + 1
10: RET ← CP(UB, ℓ)
11: end while
12: ℓ ← RET−pmin

2
+ 1

13: return CP(RET , ℓ)
14: end function

Soundness
Proposition 3.3. Algorithm 1 finds a makespan-optimal solution

to the MAPF problem if and only if a solution exists.

Proof. Correctness and completeness follow directly fromPropo-

sitions 3.1 and 3.2, using the fact that the constraints for the multi-

layer model are modified such that the non-conflicting paths from

the origin node of each agent, which corresponds to the activity

N [oriд(a),a, 1], to its destination node, which corresponds to the

activity N [dest(a),a, ℓ], are found whenever a solution exists for

the given number of layers. Since the CP solver always returns the

makespan-optimal solution for a given number of layers and using

the fact that the problem is ultimately modeled with the sufficient

number of layers according to Proposition 3.2, the obtained solution

is optimal. □

Note that we also tried different variants of the multi-layered

model. For example, we tested the models where the transitions of

agents between layers are synchronized, and hence the NoOverlap
constraints are imposed only within one layer instead of over all

layers. However, these models turned out to be less efficient in that

they require a higher number of layers to maintain optimality.

4 GENERALIZED MAPF
Recall that the main motivation for using the scheduling-based

model was its applicability to more general problems. One such

generalization of MAPF is labeling the arcs with lengths (weights),

which determine the duration of going from one node to another,

and with capacities determining the number of agents that can

occur at one arc at the same time (referred to as occupancy). Now
we work with an arc-weighted graph G = (V ,E,w,occ), where
w(x ,y) indicates the duration of moving an agent over the arc

(x ,y), and occ({x ,y}) stands for how many agents can use the pair

of arcs (x ,y) and (y,x) at the same time.

Using non-directional occupancy allows us to model the original

MAPF problem with prohibited swaps of agents (by setting occu-

pancy to 1), which would not be possible with directional capacities.

The motivation is that a road capacity is shared in both directions,

while the travel time can be different (e.g., uphill/downhill).

Figure 2: Pathological example for SM-OPT.

4.1 Scheduling-Based Approach
We model the generalization of MAPF using the multi-layer model

described in the previous section, where the NoOverlap constraints
over arcs (34) are substituted with cumulative functions [8] with

capacities set to corresponding occ({x ,y}), and the duration of

activities corresponding to arcs are set to the weights of arcs, i.e.,

LenдthO f (A[x ,y,a,k]) = w(x ,y).
Let us refer to the Algorithm 1 using the model with these gener-

alizations as SM-OPT. It is easy to verify that the propositions from

the previous section can be used also for the generalized MAPF.

Clearly, increasing occ can only improve the makespan. However,

the bound on makespanMB and the shortest path of an agent pmin
in Proposition 3.2 must be measured with respect to the lengths of

arcs. MeasuringMB and pmin w.r.t. the number of arcs would be

incorrect. To see this, consider the situation in Figure 2.

Each origin node of any agent is directly connected to its desti-

nation node with one arc of a very large length, say 1000, which is

depicted in red. The other black solid arcs are unit-length, while

the dotted arrows P1 and P2 stand for very long paths consisting of

unit-length arcs (and the corresponding number of nodes). Suppose

the length of the shortest path from oriд(i) to dest(i), for i , 0, is

500 (by the paths P1 and P2), and the length of the shortest path

from oriд(0) to dest(0) is 496. Hence, pmin = 496, and the minimal

makespan is 500, which is achieved via paths P1 and P2 with the

caveat that agent 0 reaches its destination first and then he has to

jump back and forth to the neighboring node so as to clear the way

for the other agents.

What we get from the PaS algorithm in this example is the

solutionwhere each agent goes over the direct arc to the destination,

hence the obtained makespan is 1000. If we treated the result w.r.t.

the number of arcs, that is, MB = 1 and pmin = 1, we would get
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1−1
2
+ 1 = 1, so that the algorithm would settle for the solution with

just one layer, which is far from optimum (we can set arbitrarily

long arcs instead of 1000).

Now, if we use the Proposition 3.2 correctly with the makespan

boundMB and shortest pathpmin measured w.r.t. the length of arcs,

we could compute the number of layers as
500−496

2
+ 1 = 3, which

is exactly the number that is necessary because agent 0 occurs in

its destination exactly three times. This example also confirms that

the bound on the number of layers is tight.

However, as we obtain the solution of makespan 1000 from the

PaS algorithm as well as from the first run of CP(1000, 1), the SM-

OPT computes the final number of layers as ℓ = 1000−496
2

+ 1 = 253,

which is unnecessarily too much. The question how to improve

this bound remains open.

4.2 Heuristic Approach
The main problem with the generalized MAPF is that the number

of layers calculated using the Proposition 3.2 may be very high. In

order to observe the potential of the scheduling-based approach,

let us define SM-HEUR as Algorithm 1 modified such that it starts

from one layer and increases the number of layers by one only until

a feasible solution is found and this solution is returned to the user.

Formally, the last call to the solver at line 13 is not realized and

instead, the algorithm returns RET calculated in the loop. Clearly,

this does not guarantee to find a makespan-optimal solution, and

as the pathological case from Figure 2 shows, it can be arbitrarily

far from the optimum.

4.3 SAT-Based Approach
While the generalizations described above are easy to implement in

our scheduling-based model, the same generalizations can be very

challenging (both in implementation and runtime) in other existing

approaches. One of the most popular approaches is reducing the

MAPF problem to a SAT formula [17]. We implemented such solver

using the Picat language, which has been showed to be comparable

with the state of the art SAT-based MAPF solver [1].

First, we start describing the SAT model of the classical MAPF

problemwith unit lengths and unit capacities. We define the two fol-

lowing sets of variables: ∀x ∈ V ,∀a ∈ A, t ∈ {0, . . . ,T } : At(x, a, t)
meaning that agent a is at node x at time step t ; and ∀(x ,y) ∈
E,∀a ∈ A, t ∈ {0, . . . ,T − 1} : Pass(x, y, a, t) meaning that agent

a goes through arc (x ,y) at time step t . An arc (x ,x) is added to

E, thus Pass(x, x, a, t) means that agent a stays at node x at time

step t . To model the MAPF problem, we introduce the following

constraints:

∀a ∈ A : At(orig(a), a, 0) = 1 (35)

∀a ∈ A : At(dest(a), a, T ) = 1 (36)

∀a ∈ A,∀t ∈ {0, . . . , T } :
∑
x∈V

At(x, a, t) ≤ 1 (37)

∀x ∈ V ,∀t ∈ {0, . . . , T } :
∑
a∈A

At(x, a, t) ≤ 1 (38)

∀x ∈ V ,∀a ∈ A,∀t ∈ {0, . . . , T − 1} :
At(x, a, t) =⇒

∑
(x,y)∈E

Pass(x, y, a, t) = 1 (39)

∀(x, y) ∈ E,∀a ∈ A,∀t ∈ {0, . . . , T − 1} :
Pass(x, y, a, t) =⇒ At(y, a, t + 1) (40)

∀(x, y) ∈ E,∀t ∈ {0, . . . , T − 1} :∑
a∈A

Pass(x, y, a, t) + Pass(y, x, a, t) ≤ 1 (41)

The constraints (35) and (36) ensure that the starting and goal

positions of all agents are valid. The constraints (37) and (38) ensure

that each agent occupies at most one node while every node is

occupied by at most one agent. The correct movement in the graph

is ensured by constraints (39)–(41). In order, they ensure that if an

agent is in a node, it needs to leave by one of the outgoing arcs (39).

If an agent is using an arc, it needs to arrive at the corresponding

node in the next time step (40). And last, we forbid two agents to

occupy two opposite arcs at the same time (no-swap constraint)

(41).

To find the optimal makespan, we iteratively increase the upper

bound on makespan T until a satisfiable formula is generated.

To introduce the generalization of the problem we change some

of the constraints. To introduce arc lengths, we need to change the

arrival time step in constraint (40). It needs to be set only for time

steps that make sense in accordance with the length of the arc. To

introduce arc occupancies we need to change the constraint (41) in

the following way:

∀(x, y) ∈ E,∀t ∈ {0, . . . T − w(e)} :∑
a∈A

t ′∈t, ...,t+w (e)−1

Pass(x, y, a, t ′) + Pass(y, x, a, t ′) ≤ occ({x, y})

(42)

This constraint is needed to ensure that the number of agents

that are moving over one arc in the same direction or over two

opposite arcs simultaneously does not exceed its occupancy.

While these changes may seem straightforward written as equa-

tions, it is not very natural for SAT to work with numbers other

than ones and zeros (the Picat solver transforms the above arith-

metic constraints to clauses of a Boolean formula automatically).

Furthermore, adding lengths to the arcs increases the number of

time steps T needed to solve the problem drastically and therefore

introduces many new variables to the generated formula.

5 RESULTS OF EXPERIMENTS
We implemented the scheduling approach in the IBM CP Optimizer

version 12.8 [7]. The only parameter that we adjusted is Workers,
which is the number of threads the solver can use and which we

set to 1. For the SAT-based approach we used the Picat language

and compiler version 2.2#3 [1]. The experiments were run on a PC

with an Intel® Xeon™ CPU E5-2660 v2 running at 2.00 GHz with

16 GB of RAM. We used a cutoff time of 1000 seconds per problem

instance.

5.1 Implementation Details
We first compute the all-pairs-shortest-path matrix sp using the

Floyd-Warshall algorithm [4] as the preprocessing phase. We set
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Figure 3: Comparison of all generated instances.

the lower bound on makespan to be the maximum, over all agents,

of the shortest paths from the origin node to the destination node

of the agent.

To represent the activities in the model, we use the interval vari-
ables of the CP Optimizer, which are designed for the scheduling

problems and support specialized constraints such as Alternative
and NoOverlap. The bounds of the intervals and other time vari-

ables are limited using the spmatrix, namely,∀a ∈ A,∀k ∈ {1, . . . , ℓ},
∀x ∈ V , the lower bound on start time (EST) of N [x ,a,k] is set to
sp(oriд(a),x), and the upper bound on end time (LCT) of N [x ,a,k]
is set to UB − sp(x ,dest(a)). Further, if EST > LCT , it means that

the node x cannot be passed through by agent a, and thus we omit

creating variables associated with node x and agent a.

5.2 Problem Instances
The problem instances are created over strongly biconnected undi-

rected graphs. These types of graphs ensure that the instance is

always solvable as long as there are at least 2 agents less than the

number of nodes [16]. To create the different complexity of the

instances, we incrementally increase the number of nodes in the

graph (from 20 nodes to 40 nodes with the increment of 5) as well

as the number of agents in the graph (from 2 to 9 agents). Both the

origin and destination positions of agents are randomly placed in

the graph.

Further, we added lengths to the arcs. The length of each arc

is chosen uniformly at random from the range [1,W ], whereW ∈
{1, 50, 100, 200, 300}. Occupancy is a global attribute for the instance
and is also incrementally increased (from 1 to the number of agents

in the instance). Altogether we generated 1100 instances.

5.3 Results
The charts show the number of problems solved (x-axis) within a

given time (y-axis). Hence, a curve that is closer to the bottom right

represents a better method. All of the charts have a logarithmic

scale on the y-axis.

We compare three methods described above: SM-OPT, SM-HEUR,

and the SAT-based model (labeled as "Picat"). Recall that SM-HEUR

does not guarantee to find an optimal solution.

The overall comparison of SM-OPT, SM-HEUR, and Picat is de-

picted in Figure 3. In Figures 4–8, we show comparisons for the

Figure 4: Instances with the maximum length of 1.

Figure 5: Instances with the maximum length of 50.

Figure 6: Instances with the maximum length of 100.

given maximum length of arcsW to see how the lengths of arcs

affect the efficiency of the approaches.

It can be noted that when all arcs are unit-length, which is closest

to the original MAPF problem, Picat is positively faster than the

scheduling-based methods (Figure 4). However, with increasing

upper bound on arc length (and thus increasing the differences in

individual arc lengths in an instance), the scheduling-basedmethods

are becoming faster. This can be seen with the maximum length of

50 (Figure 5), where SM-OPT is comparable with Picat, and with

the maximum length of 100 (Figure 6), where SM-OPT is faster than

Picat.
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Figure 7: Instances with the maximum length of 200.

Figure 8: Instances with the maximum length of 300.

max lenдth 1 50 100 200 300

1 s 0.59 5.38 7.50 inf inf

10 s 0.89 1.47 2.73 3.88 4.00

100 s 0.94 0.94 1.15 1.29 1.73

1000 s 0.96 0.89 0.99 1.09 1.11

Table 1: Ratio of solved instances of SM-OPT to Picat within
the given time limit.

In addition, Table 1 shows the ratio of the number of solved

instances by SM-OPT to the number of solved instances by Picat,

within the selected time limit (1–1000 seconds), for the given upper

bound on arc length. In the first row, inf means that Picat did not

solve any instance in one second.

The results clearly confirm the hypothesis that with the increas-

ing length of arcs, the advantage of SM-OPT over Picat is increasing,

which is even more apparent for lower time limits.

Figure 9 shows the comparison on instances with the maximum

length of 1 and arc occupancy only of 1, which is the classical MAPF

problem. The similarity of the charts in Figure 9 and in Figure 4

shows that the occupancy parameter does not have a significant

impact on the efficiency of any approach.

The results also show that the SM-HEUR is by orders of magni-

tude faster than SM-OPT, while the number of problems where it

found a sub-optimal solution is 71 out of 860. However, the average

(over these 71 sub-optimal answers) increase in the makespan is by

Figure 9: Instances with the maximum length of 1 and max-
imum arc occupancy of 1.

25.34 % from the optimum. This should be an incentive for further

research on the number of re-visits of an agent at a node.

Another advantage of our technique over the SAT-based ap-

proach is that even if it does not finish in time, it can find at least

some solution. Out of the 240 instances that SM-OPT did not solve

in the given time limit, it found a feasible solution in 195 cases, i.e.,

it did not find any solution only for 45 instances. This contrasts

with Picat which either finds an optimal solution or nothing. Thus,

Picat did not find any solution for 230 instances.

6 CONCLUSIONS
We showed how to model a MAPF problem as a scheduling problem,

where nodes and arcs are seen as resources used by the agents.

First, we modeled the classical problem often used in the literature

(unit lengths and capacities). Then we extended this problem by

introducing arc length and arc occupancy limits to simulate real-

world conditions. We showed that this extension is easy to model in

our scheduling approach, but it is more challenging for a classical

SAT-based approach.

We compared the discussed approaches experimentally. As ex-

pected, the classical SAT approach outperforms the scheduling-

based methods on the classical MAPF problem instances. However,

with the increasing lengths of arcs, our scheduling-based techniques

outperform the SAT-based approach.

The hardness of the problem can be linked to the number of

layers needed for its solution. This is true for both the scheduling

approach and the SAT approach. One timestep is equivalent to one

layer in the SAT approach and therefore we cannot improve on the

number of layers needed. On the other hand, the number of layers

in the scheduling approach is equivalent to the number of returns

to a single node. We created a formula that estimates the number

of layers needed. In many cases, however, this number is greatly

overestimated. A future work should lead to a better formula for the

number of layers, probably one that is not based on the makespan

estimate, but rather on some other value.
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