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Abstract

Multi-Agent Path Finding (MAPF) deals with the problem
of finding collision-free paths for a set of agents moving
in a shared environment. Colored MAPF generalizes MAPF
by defining groups of agents that share a set of destination
locations. In the paper, we evaluate several approaches to
optimally solve colored MAPF problem. We also investi-
gate methods for obtaining lower bounds on optimal solution
based on several relaxation techniques.

Introduction
Multi-Agent Path Finding (MAPF) is the problem of finding
collision-free paths for a set of agents moving in a shared
environment. In a classical formulation, each agent has its
own destination. However, there are applications where the
agents are split into groups of agents that share their goal
locations. Such generalisation of MAPF is called a Colored
MAPF. Colored MAPF problems can be found in computer
games, transportation problems (Ma and Koenig 2016), or
computer art using mobile robots and drones (Barták and
Mestek 2021).

An extreme version of Colored MAPF, where all agents
are in one group, can be solved in polynomial time, but find-
ing a makespan-optimal solution to Colored MAPF with at
least two groups is NP-hard (Surynek 2010).

Opposite to classical MAPF, there was not much attention
paid to Colored MAPF. There is only a single work (Ma and
Koenig 2016) that proposed a solving technique for Colored
MAPF – Conflict-Based Min-Cost-Flow (CBM).

Solution Methods
The CBM algorithm is based on Conflict-Based Search
(CBS). On the high-level, a search is performed over con-
flicts among the groups, while on the low-level each group
of agents is navigated by a polynomial time algorithm that is
compliant with the restrictions of the search. If there is a col-
lision between two groups, new restrictions are applied and
the search continues until a collision-free solution is found.

The first two models we propose are based on reduction to
SAT. We define variables At(v , a, i) – agent a is in vertex v
at time step i. Constraints over these variables are introduced
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to ensure the correct movement of the agents. This model is a
direct alteration of a SAT-based model used to solve classical
MAPF problem (Surynek 2014). The only difference is that
each agent is allowed to arrive into any of the specified goals.
We refer to this model as SAT-basic.

Another approach is to realize that all of the agents in a
group are interchangeable – when two agents from a single
group swap their positions, it is equivalent to both of them
waiting in their current locations. We do not need to define
the variables At(v , a, t) for each agent a but rather for each
group c, At(v , c, t). This approach saves many variables en-
tering the SAT solver and may prove to be more efficient. We
refer to this model as SAT-grouped.

Colored MAPF has been shown to be equivalent to the
multi-commodity network flow problem (MCF) in (Ma and
Koenig 2016), where the authors use a directed layered
graph constructed in a way that allows formulating the prob-
lem using standard MCF constraints. We utilize a simpler
layered graph that requires several more constraints in addi-
tion to the standard MCF formulation because the solution
time of this model is advantageous according to our prelim-
inary experiments. Groups of agents in Colored MAPF rep-
resent different commodities flowing through the extended
spatial-temporal layered graph with unit edge capacities.

Lower Bounds
All of the reduction-based models find the makespan-
optimal solution by iteratively increasing the makespan until
a feasible solution is found. Therefore, it is important to find
a tight lower bound. We present three possible strategies:

1) Simple strategy. A lower bound for classic MAPF is
obtained by computing shortest path `(s, g) between start
and goal location of each agent. In Colored MAPF, this ap-
proach is generalized by taking the minimum of the shortest
paths between start location and any of the possible goal lo-
cations. This is a lower bound for a single agent. The global
lower bound is the maximum of these numbers.

2) Degree strategy. A drawback of the simple strategy is
that the lower bound can be based on two agents from the
same group aiming for the same goal. This can be strength-
ened by imposing that each agent is sent to a different goal.
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Figure 1: Figures 1a – 1c show number of instances (x-axis) solved in a given time limit (y-axis) by each of the studied solvers.
In order they show the results for maps of size 8× 8, 16× 16 and 32× 32.

For each group c, we build a complete weighted bipartite
graph Bc with partitions corresponding to start and goal lo-
cations, in which edge costs are defined by `(s, g). We then
iteratively remove edges in the order of decreasing costs as
long as none of the nodes in Bc is isolated. This ensures that
each vertex is reachable since all of them have to be used in
the solution. The cost of the last removed edge is the desired
lower bound.

3) Matching strategy. The lower bound obtained by De-
gree strategy can be improved by checking whether Bc still
contains a complete matching. The reasoning behind the
correctness is similar to the Degree strategy – all of the
agents have to reach some goal, therefore each start has to be
matched to some goal. Removing the longest edges (which
means ignoring the longest path) provides a lower bound for
makespan as opposed to finding a matching with the small-
est cost which would provide a lower bound for sum of costs
(another cost function often used in classical MAPF).

Observation 1. Let Γ be an instance of Colored MAPF and
λX(Γ) be the lower bound obtained by method X . Then,

λsim(Γ) ≤ λdeg(Γ) ≤ λmatch(Γ).

Empirical Evaluation
The experiments are performed on grid maps with no obsta-
cles (empty) and with 20% of random vertices impassable
(random) of sizes 8×8, 16×16 and 32×32, with the number
of groups k = 5 and k = 10. In every instance, the groups’
sizes are the same |A1| = · · · = |Ak|, and the total number
of agents increases from k to 100 (40 for map sizes 8 × 8)
with the increment of k (i.e. |A| = k, 2k, . . . , 100). A time
limit of 5 minutes is imposed on runtime of each instance.

First, we compare the three strategies for obtaining lower
bounds. Simple, Degree and Matching strategies yield op-
timal makespan estimate in 200, 362, and 654 out of 720
cases respectively. Fig. 2 shows their effect on the efficiency
of SAT models (negligible runtime to compute lower bounds
is included). The clear winner is the Matching strategy and
will be used in the rest of the experiments.

The growth of runtime of each algorithm is depicted in
Fig. 1a-1c. Both MCF and SAT models fall behind CBM
on the largest maps (Fig. 1c). In the medium sized maps

Figure 2: The impact of different lower bounding methods
on runtime for each proposed model. The graph shows num-
ber of instances (x-axis) solved in a given time limit (y-axis).

(Fig. 1b), the difference is much less obvious with SAT-
grouped being the best. In the smallest maps, CBM is out-
performed by all other methods (Fig. 1a). These results com-
ply with the observation made for the classical MAPF prob-
lem that the CBS-based algorithm performs well on sparse
instances, and reduction-based algorithms perform well on
smaller, more dense instances (Švancara and Barták 2019).
Surprisingly, SAT-grouped is not always better than SAT-
basic, especially on the largest maps.

In some cases, we observe that adding more agents to the
instance can make it easier to solve. This is counterintuitive
since in classical MAPF adding more agents makes the prob-
lem harder. In Colored MAPF, additional agents are assigned
to some group and with them, new goal locations are added.
These goal locations may be used by other agents as well
which may yield a shorter and easier to compute plan.

The detailed description of proposed models and wider
empirical evaluation is available at the full version of the
paper (Barták, Ivanová, and Švancara 2021).
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