
Bringing Multi-agent Path Finding Closer to Reality

Jiřı́ Švancara
Charles University, Czech Republic

jirka.svanc@gmail.com

Abstract

Multi-agent path finding is the problem of navigat-
ing multiple agents from their current locations to
their goal locations in such a way that there are no
collisions between the agents. The classical defini-
tion of the problem assumes that the set of agents
is unchangeable, and that the distances in the graph
are homogeneous.
We propose to add to the problem specification a
set of new attributes to bring it closer to the real
world. These attributes include varying distances,
number of agents that can occupy an edge or node,
and dynamic appearance of new agents.

1 Introduction
Multi-agent Path Finding (MAPF) is the task to navigate a
set of mobile agents from their current locations to their de-
sired locations while avoiding collisions with other agents. In
recent years, this problem received much attention in theoreti-
cal computer science with applications ranging from robotics,
traffic optimization, and warehouse management, to com-
puter games and more [Sharon et al., 2011].

An abstraction where the environment is represented by a
graph is often used in literature [Ryan, 2008]. However, this
graph does not include lengths for the edges and therefore all
of them are treated as unit-length edges. Furthermore, all of
the agents share the same properties, specifically, all of the
agents have the same speed and dimensions. Another thing to
mention is that the set of the agents is unchangeable.

In this paper, we propose to add new attributes to the clas-
sical MAPF problem. The attributes mainly include varying
lengths for the edges over which the agents move as well as
allowing new agents to dynamically appear in the graph. We
also briefly study the implications of such new attributes.

2 Definition
Formally a classical MAPF instance can be written as a pair
(G,A), where G = (V,E) is a graph and A is a set of agents.
Each agent ai ∈ A is associated with starting location si ∈ V
and desired goal location gi ∈ V . This means that every agent
is also a pair ai = (si, gi).

The time is discretized and in each time step every agent
can perform either a move action to a neighboring node or
stay in its current location. Let πi denote a plan for agent
ai, then πi(j) denotes a location where agent ai is present
at time step j. A valid solution of MAPF problem is a plan
π =

⋃
ai∈A

πi such that the following constraints are satisfied:

1. The plan for each agent is a valid path. I.e. if πi(j) = v
and πi(j+1) = u then (v, u) ∈ E or πi(j) = πi(j+1).

2. No two agents occupy one node at the same time. I.e.
for all pairs of agents ai1 and ai2 at all time steps j it
holds that πi1(j) 6= πi2(j).

3. No two agents occupy one edge at the same time. I.e.
for all pairs of agents ai1 and ai2 at all time steps j it
holds that πi1(j) 6= πi2(j + 1) ∨ πi1(j + 1) 6= πi2(j).

Note that this definition allows agents to move along a fully
occupied cycle as long as it contains 3 or more nodes.

In addition to having a valid solution, it is often required
to find an optimal solution in terms of some cost function.
The two most often used functions are Sum of Costs (SOC)
[Sharon et al., 2011] and Makespan [Surynek, 2014].

3 Related Work
The algorithms that solve the MAPF problem can be in gen-
eral divided into two categories – suboptimal and optimal.
The former are computationally faster but do not provide op-
timal solutions, the latter on the other hand do provide opti-
mal solutions but are computationally hard [Surynek, 2010].

To solve the MAPF problem optimally, one may use search
algorithms [Sharon et al., 2011] including some heuristic
functions [Svancara and Surynek, 2017] or reduce the prob-
lem to some other formalism as a satisfiability problem
[Surynek, 2014].

4 Distances and Occupancy
The first extension to consider is to add lengths to the edges
of the graph G. Now formally the graph is a triplet G =
(V,E,w), where w is a function w : V → N+ that as-
signs each edge a positive number. This number represents
the number of time steps it takes an agent to move along this
edge. We shall denote this extension as a weighted MAPF. If

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5787



the function w assigns a unit-weight to each edge, then it is
equivalent to the original MAPF problem.

One can argue that this extension can be reduced to the
original problem by simply splitting the non-unit edges into
an appropriate amount of new edges with new nodes in-
between. However, these two approaches are not equal as
once an agent enters an edge, it must go through the whole
edge without stopping or turning around. If the long edge is
split into several unit edges, the agent can stop at any time or
even turn around and go back. This is not corresponding with
the real world as, for example, a car cannot turn around on
highway at any time it wishes. Our paper on weighted MAPF
will be published on AAMAS 2018 [Barták et al., 2018].

A new issue that arises with weighted MAPF is how many
agents can use one edge at one time. In the original definition,
it is forbidden for more than one agent to be present to for-
bid swapping of two neighboring agents (two agents using the
same edge in the opposite direction). In the original MAPF, it
is impossible for more than one agent to go in the same direc-
tion over one edge, because there could not be more agents
present at the node to use the same edge in time. However,
this is possible in weighted MAPF. If we leave the occupancy
of an edge as a unit, this can lead to very different solutions
than if we allow more agents to share the edge.

5 Online Version
Another extension is to consider that the environment (graph)
is constant and unchangeable, but the set of agents can change
in a way that new agents can appear at some time steps. For-
mally this change agent ai into a triplet ai = (si, gi, ti),
where ti is a time step when agent ai appears in node si.
However, ai is revealed to the solver only at the time step ti,
thus making the problem on-line. We shall denote this exten-
sion as online MAPF.

One can again argue that this extension can be reduced to
the original one by changing the graph. We add a directed
path of length ti that the agent needs to traverse before en-
tering the original graph. For further reference, we will call
this reduction offline MAPF planner. This is not equivalent to
the online MAPF because offline MAPF planner does know
in advance all of the agents, which is not an on-line problem.

There are two things to consider with regard to what hap-
pens with the new agent when it enters the graph and what
happens when it reaches its goal.

If the agent ai appears exactly at the time step ti in the node
si, this can lead to unavoidable collisions, as there may be
some agent already present at node si. To solve this problem,
we propose that the agent will appear in some meta location
and is required to perform one move action to enter the graph
at node si. It is also allowed to wait in the meta location for
as long as required.

If the agent remains staying in the goal node, after reach-
ing its destination, it is easy to find an example that makes
the instance of online MAPF unsolvable, however, it would
be solvable by an offline MAPF planner that knows in ad-
vance when and where are the new agents going to appear.
To solve this problem, we expect the agents to disappear from
the graph after reaching their goal locations.

If we consider the two properties of appearance and disap-
pearance of agents, it can be proven that every online MAPF
problem can be solved iff there are paths from si to gi for
every ai ∈ A.

On the other hand, it can also be shown that there can not be
any online MAPF solver that will guarantee as good solution
as offline MAPF solver can produce. This is due to the fact
that we do not know where the new agents will appear.

This extension has been also studied and a paper is under
review for IJCAI 2018.

Conclusion
The mentioned extensions of the MAPF problem are studied
in the Ph.D. thesis as well as different approaches to solv-
ing them. Mainly we are focused on SAT reduction solvers
and search based solvers. As it turns out, if we add different
attributes to the original problem, some solvers become less
efficient and others may surpass them.

References
[Barták et al., 2018] Roman Barták, J. S̆vancara, and

M. Vlk. A scheduling-based approach to multi-agent path
finding with weighted and capacitated arcs. In To appear
in Proceedings of AAMAS 2018, Stockholm, Sweden, July
11-13, 2018, 2018.

[Ryan, 2008] Malcolm Ross Kinsella Ryan. Exploiting sub-
graph structure in multi-robot path planning. J. Artif. In-
tell. Res., 31:497–542, 2008.

[Sharon et al., 2011] Guni Sharon, Roni Stern, Meir Gold-
enberg, and Ariel Felner. The increasing cost tree search
for optimal multi-agent pathfinding. In Toby Walsh, ed-
itor, IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 662–667. IJ-
CAI/AAAI, 2011.

[Surynek, 2010] Pavel Surynek. An optimization variant of
multi-robot path planning is intractable. In Maria Fox and
David Poole, editors, Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010,
Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press,
2010.

[Surynek, 2014] Pavel Surynek. Compact representations of
cooperative path-finding as SAT based on matchings in
bipartite graphs. In 26th IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2014, Limas-
sol, Cyprus, November 10-12, 2014, pages 875–882. IEEE
Computer Society, 2014.

[Svancara and Surynek, 2017] Jiri Svancara and Pavel
Surynek. New flow-based heuristic for search algorithms
solving multi-agent path finding. In H. Jaap van den
Herik, Ana Paula Rocha, and Joaquim Filipe, editors, Pro-
ceedings of the 9th International Conference on Agents
and Artificial Intelligence, ICAART 2017, Volume 2,
Porto, Portugal, February 24-26, 2017., pages 451–458.
SciTePress, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5788


