Multi-Agent Path Finding on Real Robots

Roman Bartik, Ivan Krasitenko, Jifi Svancara
Charles University, Faculty of Mathematics and Physics, Czech Republic
bartak @ktiml.mff.cuni.cz

Abstract

Multi-agent path finding (MAPF) deals with the
problem of finding a collision-free path for a set
of agents in a graph. It is an abstract version of the
problem to coordinate movement for a set of mo-
bile robots. This demo presents software guiding
through the MAPF task, starting from the problem
formulation and finishing with execution of plans
on real robots. Users can design grid-like maps,
specify initial and goal locations of robots, generate
plans using various abstract models implemented in
the Picat programming language, simulate and vi-
sualise execution of these plans, and translate the
plans to command sequences for Ozobots, small
robots developed for teaching programming.

Abstraction is the process of removing details from a prob-
lem representation. It is a critical step in problem solving as
without abstraction “intelligent agents would be completely
swamped by the real world” [Russell and Norvig, 2009].
Despite its importance, little attention has been paid to ab-
straction techniques compared to, for example, solving tech-
niques. Multi-agent path finding (MAPF) has practical ap-
plications in video games, traffic control, and robotics (see
Felner et al. [Felner et al., 2017] for a survey). There exists a
widely-accepted uniform abstract model of multi-agent path
finding consisting of an undirected graph describing allowed
locations and movements of agents and two possible abstract
actions: move for moving to a neighbouring node and wait
for waiting at the current node. The MAPF task is finding a
plan, i.e., a collision-free path from a start node to a desti-
nation node, for each agent. The research question is if this
abstract model is appropriate for problems with real robots.

We present software for experimental evaluation of various
MAPF abstract models by executing the obtained plans on
real robots. The software provides a visual editor to state the
MAPF problems on a grid map, interface for MAPF solvers
written in the Picat language, visualisation of plans and plan
execution, transformation of plans to control procedures for
the Ozobot robots, and tools supporting execution of plans.
The software is intended as a research tool for testing various
abstract models of the MAPF problem on real robots. The
initial results comparing several abstract models were already
published [Bartak et al., 2018].

i

4 |
=4] .
|

Figure 1: A grid map for MAPF. Agents follow the black line, the
gray circles indicate starting and goal locations.

1 Background on MAPF

The MAPF problem is defined by a graph G = (V, E) and
a set of agents aq, ..., ay, where each agent a; is associated
with starting location s; € V and goal location g; € V. A
grid map with a unit length of each edge is often used to rep-
resent the environment [Ryan, 2008], Figure 1 shows an ex-
ample of such a map. The task is to find a collision-free path
for each agent from its starting location to its goal location.
There exist versions of the MAPF problem, for example, the
k-robust version, that is particularly interesting for real robots
as the plans are supposed to be robust to possible delays dur-
ing execution. Formally, k-robust plans require for each ver-
tex of the graph to be unoccupied for at least k time steps be-
fore another agent can enter it [Atzmon et al., 2018]. Perhaps
due to many practical applications in areas such as automated
warehouses, interest in MAPF increased in recent years and
many solving techniques have been proposed. Our system
uses a reduction-based solver in the Picat programming lan-
guage [Barték er al., 2017] as it is easy to encode versions
of the MAPF model there. Picat then solves the problems by
translating them to SAT problems.

The abstract plan outputted by MAPF solvers is a sequence
of locations that the agents visit (or equivalently a sequence
of move and wait operations). Before execution on a real
robot, the abstract plan needs to be translated to a sequence
of actions that the physical robot can perform. Our system
supports the Ozobot robots [Ozobot & Evollve, Inc., 2018],
see Figure 2, that provide high-level actions such as turn left

and right and move forward so it is not necessary to deal with
low-level control. By concatenating these actions, the agent
can perform all the required steps from the abstract plan. This
translates to five possible actions at each time step — (1) wait,
(2) move forward, (3,4) turn left/right and move, and (5) turn
back and move. As the mobile robot cannot move backward
directly, turning back is implemented as two turns right (or
left). Note that different executable actions might have dif-
ferent durations, which affects synchronisation of agents.

2 System Capabilities

The presented system supports the whole process of solving
MAPF problems. The user can define a grid map, put obsta-
cles there by removing vertices and edges, and specify ini-
tial and goal locations of agents. The map can be printed for
usage with Ozobots or it can be displayed on the computer
screen and robots can move on the screen directly. The sys-
tem provides encodings of several MAPF models in the Picat
programming language including the classical model [Bartdk
et al., 2017], the 1-robust model [Atzmon et al., 2018], and
a model that includes turning actions in addition to move and
wait actions [Bartak ef al., 2018]. There is also an interface
for adding other models. Problem solving can be directly re-
alized from the software, which generates the problem spec-
ification for the solver from the map drawn by the user. The
generated plans can then be visualized as a timeline of ac-
tions for each robot (Gantt chart). The system can also visu-
alize execution of plans. Finally, the plans can be exported
for execution on Ozobots; the system allows users to specify
durations of actions for execution. As we already mentioned,
the robots can be then placed on a printed map to execute
the plans (the map can be printed from the application) or the
robots can run on the computer screen with the map displayed
there. In this second case, the system also shows where the
robots are supposed to be so the user can see how the real plan
execution corresponds to expected execution. Figure 3 shows
the integrated user interface of the software. Video presenting
the system is available at [Svancara and Krasi¢enko, 2019].

3 Conclusions and Future Steps

The presented system is intended to study various abstract
models of the MAPF problem from the perspective of plan
execution on real robots Ozobots. The initial empirical eval-
uation [Bartdk et al., 2018] showed that there is indeed a gab

Figure 2: Ozobot Evo from Evollve. Picture is taken from [Ozobot
& Evollve, Inc., 2018].

Solver Map Map Definition = Agents = Real Map

Solver | Settings | Actions |
(4 Map:

Load save

Create new map:

Simulation: | Play = Stop = Path display Scale

T) 000 #000 6000 8000 10000 12000 14000 {6000 18000 20000

‘ backw.. | 908 | 908

‘ leftGo ‘ goB. ‘ goB.
Agent 1B | |goB

| leftGo. |goa ‘ goB ‘ end ‘

lbackw. l\ef\Go lgoB [«:kca]backwv |backw.. |thtGD Nwa\(B ‘cnd ‘

Figure 3: User interface of the MAPF system.

between widely-used theoretical frameworks for MAPF and
deployment of solutions in real environments. A wider exper-
imental study is necessary to understand better the relations
between abstract models and real environments. For exam-
ple, the ratio between the length of edges and the size of
robots seems important. The presented system allows users
to define the length of edges so such studies can be realized
in future. Similarly, the system allows users to define own ab-
stract models of MAPF so other abstractions can be studied in
future. Currently, blind execution of plans is assumed, which
means that sensors are not used during execution. It would
be interesting to look at plan-execution policies that assume
communication between agents and exploit information from
sensors. The system allows users to modify the execution
strategy by using different command sequences so more ad-
vanced execution strategies can be implemented in future.

The presented system provides to the MAPF community a
tool for bridging the abstract models and plan execution on
real robots. Thanks to using a standard platform of Ozobots,
no specific expertise in robotics is necessary.

4 Acknowledgements

Research is supported by the Czech Science Foundation un-
der the project P103-19-02183S and by the Charles Univer-
sity Grant Agency under the project 90119.

References

[Atzmon et al., 2018] Dor Atzmon, Roni Stern, Ariel Felner,
Glenn Wagner, Roman Bartdk, and Neng-Fa Zhou. Robust
multi-agent path finding. In AAMAS 2018, pages 1862—
1864, 2018.

[Bartédk et al., 2017] Roman Bartdk, Neng-Fa Zhou, Roni
Stern, Eli Boyarski, and Pavel Surynek. Modeling and
solving the multi-agent pathfinding problem in picat. In
ICTAI 2017, pages 959-966. IEEE Computer Society,
2017.

[Bavrték etal.,2018] Roman Bartdk, Jif{ gvancara, Véra
Skopkovd, and David Nohejl. Multi-agent path finding on
real robots: First experience with ozobots. In IBERAMIA
2018, pages 290-301, Cham, 2018. Springer.

[Felner et al., 2017] Ariel Felner, Roni Stern, Solomon Eyal
Shimony, Eli Boyarski, Meir Goldenberg, Guni Sharon,
Nathan R. Sturtevant, Glenn Wagner, and Pavel Surynek.
Search-based optimal solvers for the multi-agent pathfind-
ing problem: Summary and challenges. In the Interna-
tional Symposium on Combinatorial Search (SoCS), pages
29-37, Palo Alto, 2017. AAAI Press.

[Ozobot & Evollve, Inc., 2018] Ozobot & Evollve, Inc.
Ozobot — Robots to code, create, and connect with, 2018.
https://ozobot.com/.

[Russell and Norvig, 2009] Stuart J. Russell and Peter
Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2009.

[Ryan, 2008] Malcolm Ross Kinsella Ryan. Exploiting sub-
graph structure in multi-robot path planning. J. Artif. In-
tell. Res., 31:497-542, 2008.

[Svancara and Krasi¢enko, 2019] Jii{ Svancara and Ivan
Krasiéenko. MAPF Scenario video demo. Charles
University, 2019. https://drive.google.com/file/d/ImkHq-
Xgkp8QH3HO0I7R27g4Q6RWzIfY 7/view.

