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Abstract. The problem of Multi-Agent Path Finding (MAPF) is to find
paths for a fixed set of agents from their current locations to some desired
locations in such a way that the agents do not collide with each other.
This problem has been extensively theoretically studied, frequently using
an abstract model, that expects uniform durations of moving primitives
and perfect synchronization of agents/robots. In this paper we study
the question of how the abstract plans generated by existing MAPF
algorithms perform in practice when executed on real robots, namely
Ozobots. In particular, we use several abstract models of MAPF, includ-
ing a robust version and a version that assumes turning of a robot, we
translate the abstract plans to sequences of motion primitives executable
on Ozobots, and we empirically compare the quality of plan execution
(real makespan, the number of collisions).
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1 Introduction

Multi-agent path finding (MAPF) recently attracted a lot of attention of AI
research community. It is a hard problem with practical applicability in areas
such as warehousing and games. Frequently, an abstract version of the problem is
solved, where a graph defines possible locations (vertices) and movements (edges)
of agents and agents move synchronously. At any time, no two agents can stay
in the same vertex to prevent collisions so the obtained plans are collision free
and hence blindly executable. The plan of each agent consists of move (to a
neighboring vertex) and wait (in the same vertex) actions. Makespan and sum-
of-cost (plan lengths) are two frequently studied objectives.

In this paper, we focus on answering two questions: how to execute abstract
plans obtained from existing MAPF algorithms and models on real robots and
how the quality of abstract plans is reflected in the quality of executed plans.
The goal is to verify if the abstract plans are practically relevant and, if the
answer is no (as expected), to provide feedback to improve abstract models to
be closer to reality. We use a fleet of Ozobot Evo robots to perform the plans.
These robots provide motion primitives, for example, they can turn left/right,
follow a line, and recognize line junction, so it is not necessary to solve classical
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robotics tasks such as localization. Though the robots have proximity sensors,
the plans are executed blindly based on the MAPF setting as the plans should
already be collision free.

Specifically, we explore the very classical MAPF setting as described above,
the k-robust setting [1], where a gap is required between the robots to compen-
sate possible delays during execution, and finally a model that directly encodes
turning operations (the classical setting does not assume direction of movement).
The abstract plans are then translated to motion primitives, which consist of for-
ward movement, turning left/right, and waiting. We explore different durations
of these primitives to see their effect on robot synchronization. As far as we know
this is the first study of practical quality of plans obtained from abstract MAPF
models.

The paper is organized as follows. We will first introduce the abstract MAPF
problem formally and survey approaches for its solving. Then we will give more
details on why it is important to look at the execution of abstract plans on real
robots. After that, we will describe all the models used in this study and how
they are translated to executable primitives of Ozobot Evo robots. Finally, we
will describe our experimental setting and give results of an empirical evaluation.

2 The MAPF Problem

Formally, the MAPF problem is defined by a graph G = (V,E) and a set of agents
a1, . . . , ak, where each agent ai is associated with starting location si ∈ V and
goal location gi ∈ V . The time is discrete and in every time step each agent
can either move from its location to a neighboring location or wait in its current
location. A grid map with a unit length of each edge is often used to represent
the environment [10]. We will also be using this type of maps in this paper.

Let πi[t] denote the location (vertex of graph G) of agent ai at time step t.
Plan πi is the sequence of locations for agent ai. The MAPF task is to find a
valid plan π that is a union of plans of all agents. We say that π is valid if (i)
each agent starts and ends in its starting and goal location respectively, (ii) no
two agents occupy the same vertex at the same time, and (iii) no two agents
move along the same edge at the same time in opposite directions (they do not
swap their positions). Formally this can be written as:

(i) ∀i : πi[0] = si ∧ πi[T ] = gi, where T is the last time step.
(ii) ∀t, i �= j : πi[t] �= πj [t]
(iii) ∀t, i �= j : πi[t] �= πj [t + 1] ∨ πi[t + 1] �= πj [t].

We denote |πi| as the length of plan for agent ai. Then we can define an
objective function that measures the quality of the found valid plan π.

Makespan(π) = max
i

|πi|
The makespan objective function is well known and often studied in the

literature [15]. It can be shown that when we require the solution to be makespan
optimal (i.e. a solution with minimal makespan), the problem is NP-hard [17].
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To solve MAPF optimally, one can generally use algorithms from one of the
following categories:

1. Reduction-based solvers are solvers that reduce MAPF to another known
problem such as SAT [14], integer linear programming [16], and answer set
programming [6]. These approaches are based on using fast solvers for given
formalism and consist mainly of translating MAPF to that formalism.

2. Search-based solvers include variants of A* over a global search space – all
possibilities how to place agents into the nodes of the graph [13]. Other make
use of novel search trees [4,11,12] that search over some constraints put on
the agents.

Though the plans obtained by different MAPF solvers might be different, the
optimal plans are frequently similar and tight (no superfluous steps are used).
As solving MAPF is not the topic of this paper (we focus on evaluating the prac-
tical relevance of obtained plans), any optimal MAPF solver can be used. We
decided for the reduction-based solver implemented in the Picat programming
language [3] that uses translation to SAT. This solver has performance com-
parable to state-of-the-art solvers and has the advantage of easy modification
and extension of the core model, for example adding further constraints or using
numerical constraints.

The Picat solver (like other reduction-based solvers) follows the planning-as-
satisfiability framework [8], where a layered graph is used to encode the plans of
a given length. Each layer describes positions of all agents in a given time step.
As the plan length is unknown, the number of layers is incrementally increased
until a solvable model is obtained. A Boolean variable Btav indicates if agent a
(a = 1, 2, . . . , k) occupies vertex v (v = 1, 2, . . . , n) at time t (t = 0, 1, . . . ,m).
The following constraints ensure the validity of every state and every transition:

(1) Each agent occupies exactly one vertex at each time.

Σn
v=1Btav = 1 for t = 0, . . . , m, and a = 1, . . . , k.

(2) No two agents occupy the same vertex at any time.

Σk
a=1Btav ≤ 1 for t = 0, . . . ,m, and v = 1, . . . , n.

(3) If agent a occupies vertex v at time t, then a occupies a neighboring vertex
at time t + 1.

Btav = 1 ⇒ Σu∈neibs(v)(B(t+1)au) ≥ 1
for t = 0, . . . ,m − 1, a = 1, . . . , k, and v = 1, . . . , n.

The model consists of k × (m + 1) × n Boolean variables, where k is the
number of agents, m is the makespan, and n is the number of vertices in the
graph. Further constraints can be added easily, for example, to prevent swaps or
to introduce robustness. Figure 1 shows the executable Picat code with the core
model to demonstrate how close the program is to the abstract model.
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import sat.

path(N,As) =>

K = len(As),

lower_upper_bounds(As,LB,UB),

between(LB,UB,M),

B = new_array(M+1,K,N),

B :: 0..1,

% Initialize the first and last states

foreach (A in 1..K)

(V,FV) = As[A],

B[1,A,V] = 1,

B[M+1,A,FV] = 1

end,

% Each agent occupies exactly one vertex

foreach (T in 1..M+1, A in 1..K)

sum([B[T,A,V] : V in 1..N]) #= 1

end,

% No two agents occupy the same vertex

foreach (T in 1..M+1, V in 1..N)

sum([B[T,A,V] : A in 1..K]) #=< 1

end,

% Every transition is valid

foreach (T in 1..M, A in 1..K, V in 1..N)

neibs(V,Neibs),

B[T,A,V] #=>

sum([B[T+1,A,U] : U in Neibs]) #>= 1

end,

solve(B),

output_plan(B).

Fig. 1. A program in Picat for MAPF.

3 Motivation and Contribution

The abstract plan outputted by MAPF solvers is, as defined, a sequence of
locations that the agents visit. However, a physical agent has to translate these
locations to a series of actions that the agent can perform. We assume that the
agent can turn left and right and move forward. By concatenating these actions,
the agent can perform all the required steps from the abstract plan (recall, that
we are working with grid worlds). This translates to five possible actions at each
time step - (1) wait, (2) move forward, (3, 4) turn left/right and move, and
(5) turn back and move. As the mobile robot cannot move backward directly,
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turning back is implemented as two turns right (or left). For example, an agent
with starting location in v1 and goal location in v7 in Fig. 2 has an abstract plan
of seven locations. However, the physical agent has to perform four additional
turning actions that the classical MAPF solvers do not take into consideration.

Fig. 2. Example of graph where an agent has to perform turning actions.

As the abstract steps may have durations different from the physical steps,
the abstract plans, which are perfectly synchronized, may desynchronize when
being executed, which may further lead to collisions. This is even more probable
in dense and optimal plans, where agents often move close to each other.

The intuition says that such desynchronization will indeed happen. In the
paper, we will empirically verify this hypothesis and we will explore several
abstract models for MAPF and the output transformations to robot actions.
These models not only try to keep the agent synchronous during the execution
of the plan but also to avoid collisions caused by some small unforeseen flaw in
the execution. We then compare and evaluate these models on an example grid
using real robots. Note that the real robots only blindly follow the computed
plan and cannot intervene if, for example, an obstacle is detected.

4 Models

In this section, we describe the studied abstract MAPF models and possible
transformations of abstract plans to executable sequences of physical actions.
Let tt be the time needed by the robot to turn by 90◦ to either side and tf be
the time to move forward to the neighboring vertex in the grid. Both tt and tf
are nonzero. The time spend while the agent is performing the wait operation
tw will depend on each model.

4.1 Classical Model

The first and most straightforward model is a direct translation of the abstract
plan to the action sequence. We shall call this a classic model. At the end of
each timestep, an agent is facing in a direction. Based on the next location, the
agent picks one of the five actions described above and performs it. This means
that all move actions consist of possible turning and then going forward. There
are no independent turning moves. As the two most common actions in abstract
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plans are (2) and (3, 4), we suggest to set the time tw of waiting actions to be
tf + 1/2 ∗ tt as the average of durations of actions (2) and (3, 4).

One can easily see that this simple model can be prone to desynchronization,
as turning adds time over agents that just move forward. Recall Fig. 2 and sup-
pose there is another agent with the same number of steps, but all of the actions
are moving forward. This agent will reach its goal 4 ∗ tt sooner than the agent
from the example.

To fix this synchronization issue, we introduce a classic + wait model. The
basic idea is that each abstract action takes the same time, which is realized
by adding some wait time to “fast” actions. The longest action is (5), therefore
each action now takes 2 ∗ tt + tf including the waiting action. The consequence
is that plan execution takes longer time, which may not be desirable.

Note that both of these models do not require the MAPF algorithm and
model to change. They only use different durations of abstract actions which are
implemented in the translation of abstract plans to executable actions.

4.2 Robust Model

Another way to fix the synchronization problem is to create a plan π that is
robust to possible delays during execution. The k-robust plan is a valid MAPF
plan that in addition requires for each vertex of the graph to be unoccupied for
at least k time steps before another agent can enter it [1]. In our experiments,
we choose k to be 1. We presume that this is a good balance between keeping
the agents from colliding with each other while not prolonging the plan too
much. The 1-robust plan is then translated to executable actions using the same
principle as the classic model. This yields a 1-robust model.

The synchronization issue is not fixed in a guaranteed way, but hopefully,
collisions are avoided as the agents tend to not move close to each other.

4.3 Split Actions Model

One may assume that executable actions might be directly represented in the
abstract model. In particular, the need to turn can be represented by an abstract
turning action. In the reduction-based solvers, this can be done by splitting each
vertex vi from the original graph G into four new vertices vup

i , vright
i , vdown

i , vleft
i

indicating directions where the agent is facing to. The new edges now represent
the turn actions, while the original edges correspond to move only actions, see
Fig. 3. Note that when an agent leaves a vertex facing some direction, it will arrive
to the neighboring vertex also facing that direction. This change to the input
graph also requires a change in the MAPF solver (constraints), because the split
vertices need to be treated as one to avoid collisions of type (ii). This means that
at any time there can be at most one agent in those four vertices representing
a given location. The abstract plan is then translated to an executable plan in
a direct way as the agent is given a sequence of individual actions wait, turn
left/right, and move forward. The waiting time tw is set as the bigger time of
the remaining actions: tw = max(tt, tf ). We shall call this a split model.



296 R. Barták et al.

Fig. 3. Example of how two horizontally connected vertices (left) are split into new
vertices (right) describing possible agent’s orientations. The dotted edges correspond
to turning actions.

A synchronization issue is still present in the split model, if the times tt and
tf are not the same. Recall that the solvers assume equal durations of all actions.
To fix this, we will use a notion from weighted MAPF [2]. Each edge in the graph
is assigned an integer value that denotes its length. The weighted MAPF solver
finds a plan that takes these lengths into account. Formally this can cause gaps
in the plan of an agent as the agent may not be present in any vertex in the
next step because the agent is still moving over an edge. This indeed does not
break our definitions and the time is still discrete, only more finely divided.
The lengths of turning edges are assigned a length of tt and the other edges are
assigned a length of tf (or its scaled value to integers). The waiting time tw is
set as the smaller time of the remaining actions: tw = min(tt, tf ). We shall call
this a weighted-split model or w-split for short.

A final enhancement to the weighted-split model is to introduce k-robustness
there. This will again ensure that the agents do not tend to move close to each
other to avoid undesirable collisions. In this case, however, it is not enough
to use 1-robustness, as the plan is split into more time steps. Instead, we use
max(tt, tf )-robustness. We shall call this robust-weighted-split model or rw-split
for short.

5 Experiments

The proposed models for MAPF were empirically evaluated on real robots and
in this chapter we will present the obtained results. We shall first give some
details on robots, that we used, and on the problem instance.

5.1 Ozobots

The robots used were Ozobot Evo from company Evollve [9]. These are small
robots (about 3 cm in diameter) shown in Fig. 4. We have chosen them because
their built–in actions are close to actions needed in the MAPF problems so there
is no need to do low–level robotic programming. The robots are programmable
through a programming language Ozoblockly [7] which is primarily meant as a
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teaching tool for children. The program is uploaded to the robot and then the
robot executes it. Most importantly, the robots have sensors underneath that
allow the robot to follow a line and to detect intersection. An intersection is
defined as at least two lines crossing each other. The robots also have forward
and backward facing proximity sensors allowing them to detect obstacles. We
used them to synchronize the start of robots (see further), but we did not exploit
sensors further during plan execution. In addition, the robots have LED diodes
and speakers that act as the robots output. We use them to indicate some states
of the robot such as a finished plan. The moving speed and turning speed can
be adjusted up to a speed limit of the robot.

Fig. 4. Ozobot Evo from Evollve used for the experiments. Picture is taken from [9].

There are some drawbacks in the simplicity of the robots. The main one is
that there is currently no communication between multiple robots and therefore
starting an instance of MAPF for all of the present robots at the same time is
difficult. To solve this problem, we used the proximity sensors and forbid the
agents to start performing the computed plan if an obstacle is present in front
of them. An obstacle was placed in front of all of the agents and once they were
ready to start executing the plan, all of the obstacles were removed. This ensured
that the start time was identical and any desynchronization at the end of the
plan was caused during the execution and not at the start.

5.2 Problem Instance

An instance was created to test the described models. It is a 5 by 8 grid map that
was obtained by randomly removing vertices and edges in such a way that the
rest of the graph still remained connected. This yielded map shown in Fig. 5. As
opposed to the usual representation, where agents reside in the cells in between
lines, here the agents follow the line and the vertex is represented as the crossing
of two lines. This map was then printed on A3 paper in a scale such that each edge
is 5 cm long and the line is 5 mm thick as per Ozobots recommended specification.
The edge length was chosen to allow two robots to safely stay in neighboring
nodes and to observe even minor desynchronization due to turning (if the edges
are longer than the duration of moving is much bigger than the duration of
turning and hence the effect of extra turning actions is less visible).
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Fig. 5. Instance map for Ozobots. Ozobots follow the black line, the gray circles indi-
cate starting and goal locations. They were not actually printed.

We used four robots; their initial and goal locations are also indicated in
Fig. 5. These locations were chosen to ensure several bottlenecks in the map
that will force the agents to navigate close to each other.

The speed of the robots was set in such a way that moving along a line takes
1600 ms and turning takes 800 ms. This means that tf = 1600 and tt = 800,
however since the numbers are both divisible by 800, we can simplify the times
for the MAPF solver to tf = 2 and tt = 1. This then gives us all required times
for the models as described in the previous section.

5.3 Results

We generated plans using each MAPF model for the problem instance described
above and then we executed the plans five times in total for each model. Several
properties were measured with results shown in Table 1.

Table 1. Measured performance of Ozobots using each proposed model.

Computed makespan Failed runs Number of collisions Total time [s] Max Δ time [s]

classic 17 5 4 NA 5

classic + wait 17 0 4.2 53 0

1-robust 19 0 0 41 4

split 27 0 2 36 3

w-split 45 0 2.6 39 0

rw-split 47 0 0 39 0

Computed makespan is the makespan of the plan returned by the MAPF
solver. It is measured by the (weighted) number of abstract actions. Note that
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the split models have larger makespan than the rest because the split models
use a finer resolution of actions, namely turning actions are included in the
makespan calculation. This is even more noticeable with w-split and rw-split,
where the moving-forward action has a duration (weight) of two.

The number of failed runs is also shown. The only model that did not finish
any run is the classic model while the rest managed to finish all of the runs. A
run fails if there is a collision that throws any of the robots off the track so the
plan cannot be finished. The average number of collisions per run shows how
many collisions that did not ruin the plan occurred. These collisions can range
from small one, where the robots only touched each other and did not affect the
execution of the plan, to big collisions, where the agent was slightly delayed in
their individual plan, but still managed to finish the plan. For the classic model,
where no execution finished, we present the number of collisions occurring before
the major collision that stopped the plan.

Since we are using the makespan objective function, all of the plans can have
their length equal to the longest plan without worsening the objective function.
Even if the agents reached their destinations sooner, their plans were prolonged
by waiting actions to match the length of the longest plan. To visually observe
this behavior, we used the LEDs on the robots. The LEDs were turned on during
the execution of the whole plan (including wait actions) and they were turned
off once the plan was finished. This helped us to measure the overall time of the
plan execution as the time from start to the last robot turning LEDs off. For
the classic model, there is no total time, since the agents did not finish at all.

Each individual agent was let to execute the plan without interference with
other agents to measure the difference between the fastest and slowest agent
as Max Δ time. If the agents are perfectly synchronized then this Δ should be
zero. All of the times are rounded to seconds because the measurements were
conducted by hand.

From the number of collisions and times, we can conclude some properties
of the models. Indeed, models classic + wait, w-split, and rw-split keep the
agents synchronous, while the other models do not (there is a gap between
finishing the plans by different agents). From all models, the classic + wait
model is the slowest one to perform the plan. This is expected as this model
uses longest durations of actions. Further, we can see that even if the agents
are synchronous, some collisions may appear, since the agents have a nonzero
diameter and are moving close to each other. This issue is solved by making a
k-robust plan, however, the simple 1-robust model was not synchronous and this
desynchronization could cause a collision eventually if the plan was long enough.

In general, the split models provide the fastest execution of plans. This is
expected because these models optimize the makespan that is closer to the real
makespan. From the results, we can also see that introduction of robustness and
weighted edges to the classical MAPF is of practical use if we plan to use the
computed plan for real robots.
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6 Conclusion

In this paper, we studied the behavior of MAPF plans when executed on real
robots. We defined several models that either take the classical plan and translate
it into a sequence of robot actions or create a plan that already consists of the
robot actions. This mainly included the need for turning of the robot.

In the experiments, we concluded that the classical plan produced by MAPF
solvers is not suitable to be performed on robots. The introduction of splitting
the position of the robot to include orientation proved to be useful as well as
using weighted edges to correspond with travel time. Furthermore, introducing
k-robustness forbid the agents to travel close to each other to prevent collisions.
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