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Abstract

The paper shows how to encode Multi-Agent Path Finding
problem as a sequential planning problem, specifically, how
to encode various collision constraints and parallel actions.

Introduction
Mutli-Agent Path Finding (MAPF) deals with finding plans
for a set of agents moving from their start locations to their
goal locations in a shared environment represented by a
graph. At every timestep, each agent can either move to a
neighboring node or stay in the current node. Agents should
not collide. Using a recently proposed terminology (Stern et
al. 2019), we distinguish five types of collisions (Figure 1).
We define two commonly used settings of movement:

Pebble motion, where no two agents can be present in a
single node at any time (conflicts (a) and (b)) and an agent
can move to a neighboring node only if the node is currently
empty (conflicts (c), (d), and (e)).

Parallel motion, where no two agents can be present in
a single node at any time or use the same edge at the same
time (conflicts (a), (b), and (e)). Moving to a neighboring
node is allowed provided that it is empty by the time the
agent arrives. The following and cycle conflicts are allowed.

In this paper we shown how to represent the two specified
settings of MAPF as a classical planning problem. Note that
actions in the MAPF plans are parallel (actions at the same
time step), while the classical plan is a sequence of actions.

Pebble Motion
To model the pebble motion variant, only a move action is
needed. An agent may move if it is at a node and the target
node is free. The effect is that the location of the agent and
node occupation is updated accordingly. Only one agent at a
time is moving while others are waiting. It is easy to see that
this indeed models the pebble motion.

It is possible to parallelize the movement of agents to de-
crease the length of the plan. It is important to group (par-
allelize) only the move actions that do not cause a conflict.
Note that the cycle conflict may never arise since it needs
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Figure 1: Types of agents’ conflicts. From left to right: an
edge conflict, a node conflict, a following conflict, a cycle
conflict, and a swapping conflict (Stern et al. 2019).

agents to move on a fully occupied cycle, however, the move
action needs at least one free node.

Modeling Cycles
As mentioned above, it is not possible to model movement
on cycles with a simple move action. We present two ap-
proaches to model such movement.

Sequential model Instead of doing a complete move to the
next node, the agent opens the move by moving to the edge
(disallowing any other agent to use that edge). The agent
completes the move to its destination node when the node
is empty, which may happen immediately after or later. The
danger here is that while an agent stays on the edge, other
agents may use the end nodes of that edge, which may give
an invalid MAPF plan (Figure 2). Thus a freeze mechanism
to disallow usage of these nodes by other agents is used.

For the opening action, we distinguish two situations, the
next node is either free or some agent is at that node.

If the destination node is free, the agent can freeze it,
making it frozen and not allowing any other agent to use

Figure 2: Invalid MAPF plan: red agent stays at the edge
while other agents go through the end nodes of that edge.
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it. At a later time, the agent can finish the move action by
finishMove changing its location accordingly.

If, on the other hand, the destination node is occupied, we
switch to a lock mode, where the agent pushes the other
agent out of the destination node (action require). When
the blocking agent moves away, it makes the node frozen
for the agent that required the node. ID of agent, who made
the request, is stored in the predicate require as only one
agent is allowed to require a certain node at a time.

The agent that moves out of the required node may also
need to move to a node that is occupied. This is done by
action passRequire that moves the blocking agent to
an edge while requiring the destination node from another
agent (we pass the request). This action also freezes the ori-
gin node for the previous agent so when we leave the lock
mode, that agent can finish its move.

The lock mode is abandoned, when the last agent moves
to an edge and its destination node is free (confirm). This
agent can be the head of a train or it could be the last agent
in a cycle. The agent that started the lock mode via action
require actually left its origin node and made that node
free. This allows the last agent to use it and close the loop.
At this time all participating agents are sitting at edges and
their destination nodes are frozen so no other agent can use
them (see Figure 3). In this situation, other agents can start
moving, other loops or trains may be formed or agents close
their moves from an edge to the next node.

The outline of the proof that this models a valid MAPF
solution is as follows. Each move is represented by a
pair of opening (freeze, require, passRequire, or
confirm) and closing (finishMove) actions. Actions
happening during the lock mode will be grouped together
and will be performed in one parallel timestep. All of the
finishMove actions can be moved right after their respec-
tive opening actions. Thus we have correctly paired actions
that correspond to one move action and the plan can be par-
allelized in the same way as for the pebble motion.

Layered model Planners may be forced to do actions in
a given order by using a layered structure modeling paral-
lel steps. Again, each move is split into opening and closing
actions (startMove and finishMove), but the order of
the agents is forced by predicate token that marks the ac-
tive agent and the predicate next that marks the next agent
to take an action. As all agents have to perform an action, we
need to explicitly model waiting actions (startWait and
finishWait). Since all agents perform exactly one pair
of actions at each layer (parallel timestep), the paralleliza-
tion is straightforward. Note that the freeze mechanism is
not required (the example in Figure 2 can not occur).

Figure 3: The sequential model of a cycle: frozen nodes are
depicted in shadow (the color indicates for which agent).

Figure 4: Number of instances solved in a given time limit.

Empirical Evaluation
To compare the proposed models, we used a MAPF bench-
mark set (Stern et al. 2019). We chose five different maps
with dimensions ranging from 8 × 8 to 32 × 32. The
number of agents increases from 1 to 20. For each of
the settings, 5 instances were used, which gives 500 in-
stances in total. All tested models are available on-line
(https://github.com/svancaj/MAPF-via-PDDL).

PAR10 score was used to compare the efficiency of the
models. This score reflects the runtime and adds an extra
penalty for each timeouted instance – the lower the score,
the better the model performed. The best model with PAR10
14 and no timeouted instances is the pebble motion model,
followed by Layered with 144 and Sequential with 308 time-
outed instances and PAR10 5767 and 12226 respectively. A
more detailed comparison can be seen in Figure 4, where
an ad-hoc planner in Picat was also used. The results indi-
cate that the more complex models that allow cycle conflicts
are indeed more challenging to compute. Also, the layered
model with a token-passing mechanism is more successful
than a carefully crafted sequential model.

Conclusion
In the paper, we proposed sequential planning models to de-
scribe MAPF problems. The straightforward pebble-motion
model is surprisingly efficient even in comparison with an
ad-hoc planner, but it cannot describe plans with cycles. We
extended the model to cover cycles, but the performance de-
graded significantly. By forcing the planner to plan actions
for all agents in one layer, we improved the performance.

Note that none of the presented models guarantees an
optimal solution. However, the Layered model solved 232
instances (out of 356) optimally and those, that were not
solved optimally, had a solution on average 6.2% worse than
optimum.
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