
On SAT-Based Approaches for Multi-Agent Path Finding
with the Sum-of-Costs Objective

Roman Barták, Jiřı́ Švancara
Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
bartak@ktiml.mff.cuni.cz

Abstract

Multi-Agent Path Finding (MAPF) deals with the problem of
finding collision-free paths for a set of agents. Each agent
moves from its start location to its destination location in
a shared environment represented by a graph. Reduction-
based solving approaches for MAPF, for example, reduction
to SAT, exploit a time-expanded layered graph, where each
layer corresponds to specific time. Hence, these approaches
are natural for minimizing Makespan (the shortest time until
all agents reach their destinations). Modeling the other fre-
quently used objective, namely Sum of Costs (SoC; the sum
of paths lengths of all agents) is more difficult as the solu-
tion with the smallest SoC may not be reached in the time-
expanded graph with the smallest Makespan. In this paper we
suggest a novel approach to estimate the Makespan, that guar-
antees the existence of a SoC-optimal solution. We also pro-
pose a novel pre-processing technique reducing the number
of variables in the SAT model. The approach is empirically
compared with an existing reduction-based method as well as
with the state-of-the-art search-based optimal MAPF solver.

Introduction

There exist numerous practical situations, where a set of
agents is moving in a shared environment, each agent hav-
ing its own destination. For example, traffic junctions and
large warehouses are typical examples of congested envi-
ronments, where agents are moving between locations while
sharing paths. In the era of autonomous systems, it is impor-
tant to have efficient solutions for coordinating such agents.

The above problem is known as multi-agent path finding
(MAPF) or cooperative path finding (CPF) (Silver 2005).
The shared environment is often abstracted as a (directed)
graph, where agents are initially distributed at some vertices,
each agent having a destination vertex to reach. The task is
to find a plan of movements for each agent to reach the des-
tination vertex while not being at the same vertex as another
agent at the same time. A frequent abstraction assumes that
agents are moving synchronously and distances between the
vertices are identical. Then, at each time step, each agent ei-
ther moves to a neighboring vertex or stays in the current

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vertex. Grid worlds (such as the famous Lloyd 15-puzzle)
are satisfying this assumption. This model makes it natu-
ral to use solving techniques based on Boolean satisfiability
or state-space search, which are currently two leading ap-
proaches to solve MAPF.

The MAPF problem has received a lot of attention from
the research community since it is highly practically moti-
vated in real life. Some examples, where the MAPF prob-
lem is useful, include traffic optimization (Kim, Hirayama,
and Park 2014; Michael, Fink, and Kumar 2011), navigation
(van den Berg et al. 2009), movement in computer games
(Wang and Botea 2008), etc.

Based on the settings where the problem is used, we may
have some requirements on the optimality of the found solu-
tion. The two most often used cost functions are Makespan
(i.e., the minimal time when all agents reached their destina-
tion) and Sum of Costs (i.e., the number of all actions per-
formed by all agents). Each of the cost functions has a prac-
tical use. Makespan optimal solutions minimize the time to
completion of the whole task, even at the cost of taking more
actions by some agent(s). On the other hand, Sum of Costs
minimizes the total number of actions performed, where ac-
tions can be linked to some fuel consumption.

In this paper, we focus on finding the Sum of Costs opti-
mal solutions to MAPF via reduction to a satisfiability (SAT)
problem. The reduction approach is more commonly used to
finding Makespan optimal solutions, where the translation
is more natural. We based our novel models on an existing
model that uses reduction to SAT to find the Sum of Costs
optimal solutions (Surynek et al. 2016a), and we aim to im-
prove its efficiency by a different approach to estimate the
makespan necessary to reach the Sum of Costs optimum.

Problem Definition

Multi-Agent Path Finding (MAPF) deals with the problem
of finding a collision-free paths for a set of agents. For-
mally, a MAPF instance is given as a pair (G,A), where
G = (V,E) is a graph with vertices V and edges E, and A
is a set of agents. Each agent ai ∈ A is associated with its
starting location si ∈ V and its desired goal location gi ∈ V
so we can denote the agent as a pair ai = (si, gi).

The time is discretized to time steps and in each time step

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

10

every agent can perform either a move action, that is, to go
to a neighboring vertex or a wait action, that is, to stay in its
current location. The MAPF task is to find a valid plan – a
sequence of actions (or equivalently a sequence of locations)
– for each agent.

Let πi denote a plan for agent ai, then πi(j) denotes a
location where agent ai is present at a time step j. A valid
solution of MAPF problem is a plan

π =
⋃

ai∈A

πi

such that the following constraints are satisfied:

1. The plan for each agent is a valid path, that is, πi(1) = si,
πi(|πi|) = gi, and if πi(j) = v and πi(j + 1) = u then
(v, u) ∈ E or v = u.

2. No two agents occupy one node at the same time, that is,
for all pairs of agents ai1 and ai2 at all time steps j it holds
that πi1(j) �= πi2(j).

3. No two agents occupy one edge at the same time, that is,
for all pairs of agents ai1 and ai2 at all time steps j it holds
that πi1(j) �= πi2(j + 1) ∨ πi1(j + 1) �= πi2(j).

Note that this definition allows agents to move along a
fully occupied cycle as long as it contains three or more ver-
tices. Other definitions, where a vertex needs to be empty
before an agent can move to it, are also used (Kornhauser,
Miller, and Spirakis 1984a). This setting is often called peb-
ble motion. All of the techniques presented in this paper can
be easily modified to either version; we shall stick to the
presented definition.

In addition to having a valid solution, it is often required
to find an optimal solution in terms of some cost function.
The two most often used functions are Sum of Costs (SoC)
(Sharon et al. 2011) and Makespan (Mks) (Surynek 2014).

Let |πi| denote the number of actions agent ai per-
forms before reaching gi for the last time1. Then we define
Makespan and Sum of Costs as follows:

Mks(π) = max
i=1...n

|πi|

SoC(π) =
n∑

i=1

|πi|

Both of these objective functions have real-life motiva-
tion and they are not equivalent. Optimizing either of the
Makespan or Sum of Costs objective function can yield dif-
ferent solutions (Surynek et al. 2016b) – see Figure 1 for an
example.

It is also important to note that, while there are many
polynomial-time algorithms that can find a feasible solution
(Kornhauser, Miller, and Spirakis 1984b; de Wilde, ter Mors,
and Witteveen 2014; Surynek 2009), the task to find either
a Makespan optimal solution or a Sum of Costs optimal so-
lution is an NP-Hard problem (Ratner and Warmuth 1990;
Yu and LaValle 2013).

1An agent might be forced to leave its goal node to allow pass of
another agent. Therefore, the last entrance to the goal node is used
to define the plan length. Wait actions are included in the plan.

Figure 1: MAPF instance with two agents, where optimizing
Sum of Costs and Makespan objective functions yield dif-
ferent plans. The start and goal location of both agents are
highlighted as well as the found path for each agent. The top
plan minimizes Sum of Costs. The bottom plan minimizes
Makespan.

Makespan Optimal Model
As the plan length is unknown in advance, reduction-based
approaches to solve planning problems use the method of
solving the problem with restricted plan length and, in case
of failure, increasing the length limit (Kautz and Selman
1992). This makes it natural to look for shortest plans so we
shall also start by describing the classical Makespan optimal
translation of MAPF to SAT.

Lets assume that we are looking for a solution to the
MAPF problem with makespan T . We define the following
two sets of variables: ∀x ∈ V, ∀a ∈ A, ∀t ∈ {0, . . . , T} :
At(x , a, t) meaning that agent a is at vertex x at time step
t; and ∀(x, y) ∈ E, ∀a ∈ A, ∀t ∈ {0, . . . , T − 1} :
Pass(x , y , a, t) meaning that agent a goes through an edge
(x, y) at time step t. An auxiliary edge (x, x) is added to E,
thus Pass(x , x , a, t) means that agent a stays at vertex x at
time step t. To model the MAPF problem, we introduce the
following constraints:

∀a ∈ A : At(sa , a, 0) = 1 (1)
∀a ∈ A : At(ga , a,T) = 1 (2)

∀a ∈ A, ∀t ∈ {0 , . . . ,T} :
∑

x∈V

At(x , a, t) ≤ 1 (3)

∀x ∈ V , ∀t ∈ {0 , . . . ,T} :
∑

a∈A

At(x , a, t) ≤ 1 (4)

∀x ∈ V , ∀a ∈ A, ∀t ∈ {0 , . . . ,T − 1} :

At(x , a, t) =⇒
∑

(x ,y)∈E

Pass(x , y , a, t) = 1 (5)

11

∀(x , y) ∈ E , ∀a ∈ A, ∀t ∈ {0 , . . . ,T − 1} :

Pass(x , y , a, t) =⇒ At(y , a, t + 1) (6)

∀(x , y) ∈ E : x �= y , ∀t ∈ {0 , . . . ,T − 1} :
∑

a∈A

(Pass(x , y , a, t) + Pass(y , x , a, t)) ≤ 1 (7)

The constraints (1) and (2) ensure that the starting and
goal positions of all agents are valid. The constraints (3) and
(4) ensure that each agent occupies at most one vertex and
every vertex is occupied by at most one agent. The correct
movement in the graph is forced by constraints (5)–(7). In
sequence, they ensure that if an agent is in certain vertex, it
needs to leave it by one of the outgoing edges (5). If an agent
is using an edge, it needs to arrive at the corresponding ver-
tex in the next time step (6). Finally, we forbid two agents to
occupy two opposite edges at the same time (no-swap con-
straint) (7).

To find the optimal makespan, we iteratively increase the
makespan T until a satisfiable formula is generated. This
clearly provides the makespan-optimal solution as the iter-
ative approach guarantees that no solution with a smaller
makespan exists.

To better visualize the above-described constraints, we
can use the notion of a time-expanded graph. See Figure 2
for reference. We create T copies of the original vertices
from graph G and add edges (ui, vi+1), iff there is an edge
(u, v) ∈ E in the original graph (these edges correspond to
move actions), and we also add edges (ui, ui+1) for each
vertex (these edges correspond to wait actions). This cre-
ates a time-expanded graph GT . Agents are moving over
this graph in such a way that they start in the 0-th layer and
at each timestep they move to the next layer. Constraints (3)
and (4) ensure that agents do not collide in vertices. No swap
condition is provided by constraint (7).

It is possible to speed up the computation by using a bet-
ter lower bound for the makespan instead of starting with
T = 1. A straightforward lower bound is to compute for
each agent ai the shortest path SPi from agent’s start lo-
cation si to agent’s goal location gi. The lower bound for
T is then the longest of these shortest paths LB(Mks) =
maxi∈A SPi.

Another way to enhance the computation is to do a pre-
processing for the variables At(x , a, t). These variables cor-
respond to an agent being present at some location at a time.
However, for some locations, we can determine, that the spe-
cific agent can not be present at the specific time, because
we know where the agent needs to be present at times 0 and
T . Specifically for agent ai, if vertex v is distance d away
from start location si, we know that the agent ai can not be
present in vertex v in times 0, . . . , (d− 1) simply because it
can not travel the whole distance in time. Similarly, if vertex
v is distance d away from goal location gi, agent ai can not
be present in vertex v in times T − d+ 1, . . . , T .

As a result, we can also do a pre-processing for the vari-
ables Pass(x , y , a, t). If we determined that an agent can
not be present at vertex v at time t, we can conclude that nei-
ther incoming or outgoing edges of that vertex can be used
in time t.

Figure 2: Example of a graph on three vertices being trans-
formed to time-expanded graph with T layers

Sum of Costs Optimal Models

Solving the MAPF problem Makespan optimally via reduc-
tion to SAT is quite straightforward in the sense that once
we find the correct number of layers in the time-expanded
graph, we are guaranteed that this is the Makespan-optimal
solution. On the other hand, if we use the same approach
to finding the Sum of Costs optimal solution, the first
solvable formula is not guaranteed to provide the SoC-
optimal solution. Recall Figure 1, indeed we would first
find the Makespan optimal solution with Mks(π) = 5 and
SoC(π) = 10. However, by adding another layer to the
time-expanded graph, we are able to find a better solution
with respect to the Sum of Costs (which is actually the SoC-
optimal solution in this example). In general, it is not clear
how many extra layers need to be added to guarantee that the
found solution is optimal. This exact problem is addressed
in the following two models.

To design models for SoC optimization, we can keep the
core model with all of the constraints (1) – (7) as they de-
scribe proper paths for agents and they are not related to any
particular objective.

In addition, we assume that we can encode a constraint

SoC (π) ≤ UB(SoC) (8)

which ensures that the found plan π has Sum of Costs at
most UB(SoC), which is some upper bound.

The constraint (8) allows us to use a dichotomic branch-
and-bound technique to optimize the value SoC(π)

Minimize SoC (LB(SoC),UB(SoC)) (9)

which, given a lower bound LB(SoC) and an upper bound
UB(SoC), ensures that the found plan π has the minimal
Sum of Costs in the interval 〈LB(SoC), UB(SoC)〉. This

12

can be achieved by iteratively using the constraint (8) and
halving the specified interval. Therefore, this technique is
just a syntactic shortcut for repetitive usage of constraint (8)
with more precise bounds.

Model 1

The pioneering SAT-based model to compute the Sum of
Costs optimal solution (Surynek et al. 2016a) focuses on
bounding both Makespan (i.e., the number of layers in time-
expanded graph) and Sum of Costs together using constraint
(8). The bounds are set in such a way that the first solvable
formula generated corresponds to the optimal Sum of Costs
solution.

Algorithm 1 Model 1
function MODEL 1

∀ai ∈ A : SPi = shortest path(si, gi)
LB(Mks) = maxi∈A SPi

LB(SoC) =
∑

i∈A SPi

δ ← 0
while No Solution do

solve MAPF(LB(Mks) + δ, LB(SoC) + δ)
δ ← δ + 1

end while
end function

See Algorithm 1 for description of the model. We first
start by finding the shortest path for each agent while ignor-
ing all other agents. The maximum length of these paths is
a valid lower bound for Makespan, as was mentioned be-
fore. For similar reasons, the sum of the lengths of these
paths is a valid lower bound for Sum of Costs – each agent
is guaranteed to travel at least this distance. The function
solve MAPF(T , C) generates the SAT model with con-
straints (1) – (7), Makespan T , and using C as the UB(SoC)
in constraint (8).

Let δ be the extra movement that is allowed to the agents.
At first, we start with δ = 0 and try to solve the MAPF
problem with the lower bounds. If this is possible then we
know it must be the optimal solution, since both values (for
Makespan and Sum of Costs) are lower bounds. If there is
no solution with these restrictions, we increase δ by 1. No-
tice that this increment adds an extra layer to time-expanded
graph and also allows some agent to make one extra step. It
has been shown that this is sufficient to find the Sum of Costs
optimal plan and furthermore it will be the first solvable for-
mula (Surynek et al. 2016a). We will now present a different
proof of soundness of the approach that opens doors for our
novel model.

Theorem 1. If there exists a solution with the Sum of Costs
LB(SoC) + δ then this solution can be found in a time-
expanded graph with LB(Mks) + δ layers.

Proof. Assume that there exists a solution with the Sum
of Costs LB(SoC) + δ, where LB(SoC) =

∑
i∈A SPi.

It means that this plan uses δ extra actions in addition to
LB(SoC) actions that are necessary for each agent to cover
its shortest path. These extra actions can be used by any

of the agents. If agent i uses k extra actions then we need
a time-expanded graph with SPi + k (or more) layers to
model its path. Hence, the largest time-expanded graph is
needed if all of the extra actions are used by the agent with
the longest of the shortest paths (ie. maxi∈A SPi), which is
exactly equal to LB(Mks). It means that a time-expanded
graph with LB(Mks) + δ layers is enough to model all
paths.

Model 1 incrementally increases δ both for Sum of Costs
and for Makespan. If it finds a satisfiable model, then ac-
cording to Theorem 1, this model gives the Sum of Costs
optimal solution (if there was a better SoC-optimal solution
then it would be found for a smaller makespan).

Model 2

By observing the behavior of Model 1, we noticed that at
the end, it may generate larger time-expanded graph than
it needs for the Sum of Costs optimal solution (the Sum
of Costs optimal solution can be found in a time-expanded
graph with a smaller makespan). Moreover, smaller time-
expanded graphs are refuted one by one by using too tight
upper bound for Sum of Costs. This brought us to the idea of
skipping the iterative increase of δ by one and, rather, going
directly to the makespan that guarantees the existence of the
Sum of Costs optimal solution, even at the expense of over-
estimating the number of layers of the time-expanded graph
required. The new model is called Model 2.

Algorithm 2 Model 2
function MODEL 2

∀ai ∈ A : SPi = shortest path(si, gi)
LB(Mks) = maxi∈A SPi

LB(SoC) =
∑

i∈A SPi

γ ← 0
while No Solution do

SoC ← opt MAPF(LB(Mks) + γ,
LB(SoC), |A| ∗ LB(Mks) + γ)

γ ← γ + 1
end while
δ ← SoC − LB(SoC)
opt MAPF(LB(Mks) + δ, LB(SoC), SoC)

end function

See Algorithm 2 for reference. Again, we start by finding
the shortest paths for each agent and computing the lower
bounds for both Makespan and Sum of Costs. We then find
the Makespan optimal solution for the problem just as it was
described in the previous section. In this step, there is no re-
striction on Sum of Costs. This solution gives us some Sum
of Costs, that we will use as an upper bound.

Computing δ in this algorithm gives information how
many extra steps all of the agents used in the found solu-
tion. Following the idea of Theorem 1, LB(Mks)+ δ is the
number of layers in the time-expanded graph that guaran-
tees to find the Sum of Costs optimal solution. Finding this
optimal solution is the last step in the algorithm.

The function opt MAPF(T , L, U) generates the SAT
model with constraints (1) – (7), Makespan T , and using

13

L and U as LB(SoC) and UB(SoC) respectively for the
dichotomic branch-and-bound search using (9). If the model
is satisfiable, the function returns the minimal value of SoC
within the interval 〈L,U〉.

In particular, when finding the Makespan optimal solu-
tion, we let the interval be 〈LB(SoC), |A|∗LB(Mks)+γ〉.
The upper bound lets each agent from A perform as many
action as possible in the currently given Makespan. This
means that there is no restriction on how many steps each
agent can take.

When we are finding the Makespan optimal solution to
get an upper bound on Sum of Costs, there is no need to
find the optimal solution. In fact, any solution provided by
some polynomial sub-optimal solver would suffice. How-
ever, these solutions tend to overestimate the solution quite a
bit and, therefore, produce much higher δ, resulting in a big-
ger time-expanded graph. The trade-off is so big that in the
algorithm, we find not only a Makespan optimal solution,
but from all of the Makespan optimal solution, we select the
one with the minimal Sum of Costs.

This approach can be summed in a sequence of three
optimizations – first, we optimize the Makespan, then, for
that Makespan we optimize the Sum of Costs, and lastly,
from these upper and lower bounds, we create a sufficiently
large time-expanded graph, on which we once again opti-
mize Sum of Costs, which is guaranteed to be the globaly
optimal Sum of Costs of that problem.

Reduction of Used Variables

An improvement that can be applied to both of the described
models focuses on decreasing the number of variables that
enter the SAT solver. Once again recall the time-expanded
graph used to solve the MAPF problem Makespan optimally.
A possible way to look at the visualization is that the agents
are not moving over one time-expanded graph, but rather,
each agent has its own time-expanded graph. These graphs
are then interconnected by the constraints that prohibit col-
lisions.

When computing Makespan optimal solutions, we need
for all agents to have the time-expanded graph of the same
size (same number of layers), since we do not know how
much of movement each agent needs to perform. On the
other hand, when optimizing Sum of Costs, we do not nec-
essarily need the same number of layers for each agent.

Assume that there are agents ai and aj with their respec-
tive shortest paths SPi and SPj and furthermore SPi is
the longest of all of the shortest paths, while SPj is much
shorter. Now recall Model 1 and Model 2, where optimizing
Sum of Costs means, that even agent aj is allowed to move
in time-expanded graph with SPi + δ layers, however, there
is allowed only δ extra movement for all of the agents com-
bined. Even if all of that movement was used up by agent
aj , there would still be (SPi − SPj) > 0 extra layers in
the time-expanded graph that could not be used. This cre-
ates superfluous variables that the SAT solver needs to work
with.

The improvement applied on Model 1 and Model 2 then
works as follow. When computing function solve MAPF,
we create for each agent ai a separate time-expanded graph

TEGi with SPi + δ layers. The time-expanded graphs are
interconnected by the constraints (1) – (7) as usual. The last
thing to solve is the goal location gi of agent with smaller
SPi. When an agent reaches its goal, it needs to stay in that
goal (i.e. it does no disappear) and all the other agents needs
to avoid it. We can simply achieve this by forbidding vertex
gi for all other agents in timesteps greater than SPi + δ.

Note specifically in Model 2 that we use this enhancement
only when finding the Sum of Costs optimal solution (i.e.
the second call to solving MAPF in Algorithm 2). We do
not want to use this enhancement while finding Makespan
optimal solution, because it does not guarantee to find one.

Using this enhancement on Model 1 and Model 2 we cre-
ate Model 1+ and Model 2+.

Experiments

Implementation

Each of the described models was implemented using the
Picat language (Picat language and compiler version 2.2#3),
which is a logic-based programming language similar to
Prolog. The main advantage, and the reason this tool was
used, is that the necessary constraints are easily represented
and then automatically translated to a propositional formula.
See Figure 3 for an example of code in the Picat language.
Notice the similarity between constraints (1) – (7) and the
code itself.

In addition, the language provides tools to solve the gen-
erated formula and to add the constraint (8) while applying
the branch-and-bound technique (9). Moreover, it has been
shown that the solver using Picat language is comparable
with the state-of-the-art SAT-based MAPF solver (Barták et
al. 2017).

Instances

To test the described models, we generated pseudo-random
instances. The instances are 4-connected grid maps with in-
creasing sizes from 8 × 8 to 16 × 16 with an increment of
2. To introduce some influence between the agents, 20% of
the cells in the grid were marked as an impassable obstacle.
Representation of one of the maps can be seen in Figure 4.

An increasing number of agents were placed into the cre-
ated grids. If the grid was of size W ×W then the number of
agents was in a range of W to 2W with an increment of 2.
The start and goal locations were chosen randomly in such a
fashion, that no two agents are to start in the same location or
to end in the same location. Each of such setting was created
five times. Together, this yields 175 unique instances.

Results

All of the generated instances were solved by each of the
described model. In addition, we used Conflict Based Search
(CBS) (Sharon et al. 2012) solver as a state-of-the-art Sum
of Costs optimal solver. The timeout of each instance was
set to 600 seconds. Since all of the solvers compute the same
problem and the quality of the solution is the same, the main
property we are interested in is the time it takes each model
to compute it. This result can be seen in Figure 5.

14

Figure 3: Example of a Picat code solving MAPF in the
Makespan optimal way.

The instances are ordered based on how long it took
to complete them, therefore, the lower the line in the re-
sults graph, the better. We can see that CBS is hands-downs
fastest for about 90 instances, however, then there is a rapid
increase in computation time and it becomes the slowest
solver. The four reduction based models seem to be ordered
quite well with model Model 2+ being the fastest, closely
followed by model Model 2 and Model 1 and Model 1+ be-
ing the slowest.

A more detailed analysis of the performance can be seen
in Table 1. The most instances solved were by Model 2 and
Model 2+, 137 and 139 respectively. All of the other solvers
solved similar number of instances – 95 to 97. If we disre-
gard CBS for the moment, we can see that Model 2+ was
fastest on most of the instances, while the other reduction
based solvers were fastest on only few instances.

To see the difference between the computation times, we
compute IPC score2 for each instance. Solver gets a score
of 0 if it did not manage to solve the instance in given time

2The evaluation score was introduced in recent International
Planing Competitions, hence the name.

Figure 4: Example of a 10 × 10 grid graph with obstacles
used in the experiments.

M. 1 M. 2 M. 1+ M. 2+ CBS

of solved 97 137 95 139 97

of fastest 0 4 3 46 88

of fastest 9 8 6 118 –(without CBS)

IPC score 16.11 44.56 16.76 57.07 92.50

IPC score 57.19 110.54 53.93 134.29 –(without CBS)

Table 1: Number of solved instances, number of times the
specified solver was fastest, and IPC scores (both in total and
when comparing only reduction based solvers). ”Model” is
abbreviated to ”M.”

limit. Otherwise, the score is computed as

min. time
solver time

,

where min. time is the time it took the fastest solver and
solver time is the time it took the solver in question. This
produce a score in range from 0 to 1, where the bigger the
number the better. The scores of all instances were summed
and the result is presented in Table 1 as IPC score. We can
see that (if we disregard CBS again) the Model 2+ is indeed
the most successful closely followed by Model 2. Model 1
and Model 1+ reached similar results.

If we take into consideration CBS as well, we can see
a trend similar to the one seen in the graph in Figure 5. If
CBS is able to solve the instance in the given time limit,
it can solve it faster than the reduction based solvers. This
is apparent from the similar number of solved instances by
CBS and instances on which CBS is fastest.

On the other hand, the reduction based solvers were able
to solve more (or the same) number of instances than CBS.
In this sense, Model 2 and Model 2+ are the most successful.

Interesting thing to note is that the enhancement ”+”
added to Model 1 and Model 2 seems to be useful only for
Model 2, while applied on Model 1 it gives no advantage.

15

Figure 5: Measured results of the experiments. The y-axis is measured runtime. The x-axis describes the number of solved
problems within a given time

Conclusion

In this paper, we studied the Multi-Agent Path Finding prob-
lem (MAPF) under the Sum of Costs objective. Translation
of MAPF to some other formalism, namely translating to
the satisfiability (SAT) problem, is a quite popular approach.
While the translation to find the Makespan optimal solution
is quite straightforward and natural using the time-expanded
graphs, the translation for Sum of Costs is more complicated
because we need to limit both Makespan (the number of lay-
ers in the time-expanded graph) and Sum of Costs.

We described two different models, one previously known
(Surynek et al. 2016a) and one novel one, that provide such
encoding. We further present an enhancement for both of
the models that limits the number of variables entering the
SAT solver. The models were tested against each other and
against a search-based state-of-the-art Sum of Costs optimal
solver CBS. The results show that while each of the mod-
els is fastest on some instances, the most prominent one (in
terms of solved instances and computation time) is Model
2+, the novel model with the enhancement.

Another interesting result is that CBS tends to be the
fastest solver if it solves an instance, but solves the fewest
instances overall in the given time limit

A surprising result is that the enhancement reducing
the number of variables entering the SAT solver improved
Model 2, while it did not affect Model 1 much. Note that
we do not actually remove the variables from the model but
we constrain them to get the value zero. The different ef-
fect on Models 1 and 2 still requires further investigation.
Also, a deeper study of the relationship between parame-

ters of MAPF instances and performance of algorithms is
needed to understand when each of these approaches sur-
passes the others. One may easily see that Model 1 gen-
erates (many) unsatisfiable SAT instances and the first sat-
isfiable instance gives the SoC-optimal solution. Somehow
complementary, Model 2 generates unsatisfiable instances
to find the Makespan-optimal solution (similarly to Model
1 but without bounding SoC), but then it generates (mostly)
satisfiable instances to minimize the Sum of Costs.

Acknowledgements

Research is supported by the Czech Science Foundation un-
der the project P103-19-02183S and by the Charles Univer-
sity Grant Agency under the project 90119.

References

Barták, R.; Zhou, N.; Stern, R.; Boyarski, E.; and Surynek,
P. 2017. Modeling and solving the multi-agent pathfinding
problem in picat. In 29th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2017, Boston, MA,
USA, November 6-8, 2017, 959–966. IEEE Computer Soci-
ety.
de Wilde, B.; ter Mors, A.; and Witteveen, C. 2014. Push
and rotate: a complete multi-agent pathfinding algorithm. J.
Artif. Intell. Res. 51:443–492.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In ECAI, 359–363.
Kim, D.; Hirayama, K.; and Park, G. 2014. Collision avoid-

16

ance in multiple-ship situations by distributed local search.
JACIII 18(5):839–848.
Kornhauser, D.; Miller, G. L.; and Spirakis, P. G. 1984a.
Coordinating pebble motion on graphs, the diameter of per-
mutation groups, and applications. In 25th Annual Sym-
posium on Foundations of Computer Science, West Palm
Beach, Florida, USA, 24-26 October 1984, 241–250. IEEE
Computer Society.
Kornhauser, D.; Miller, G. L.; and Spirakis, P. G. 1984b.
Coordinating pebble motion on graphs, the diameter of per-
mutation groups, and applications. In 25th Annual Sym-
posium on Foundations of Computer Science, West Palm
Beach, Florida, USA, 24-26 October 1984, 241–250. IEEE
Computer Society.
Michael, N.; Fink, J.; and Kumar, V. 2011. Cooperative
manipulation and transportation with aerial robots. Auton.
Robots 30(1):73–86.
Ratner, D., and Warmuth, M. K. 1990. Nxn puzzle and
related relocation problem. J. Symb. Comput. 10(2):111–
138.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2011.
The increasing cost tree search for optimal multi-agent
pathfinding. In Walsh, T., ed., IJCAI 2011, Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011, 662–
667. IJCAI/AAAI.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2012. Conflict-based search for optimal multi-agent path
finding. In Hoffmann, J., and Selman, B., eds., Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI
Press.
Silver, D. 2005. Cooperative pathfinding. In Young, R. M.,
and Laird, J. E., eds., Proceedings of the First Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
June 1-5, 2005, Marina del Rey, California, USA, 117–122.
AAAI Press.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016a.
Efficient SAT approach to multi-agent path finding under
the sum of costs objective. In Kaminka, G. A.; Fox, M.;
Bouquet, P.; Hüllermeier, E.; Dignum, V.; Dignum, F.; and
van Harmelen, F., eds., ECAI 2016 - 22nd European Confer-
ence on Artificial Intelligence, 29 August-2 September 2016,
The Hague, The Netherlands - Including Prestigious Appli-
cations of Artificial Intelligence (PAIS 2016), volume 285
of Frontiers in Artificial Intelligence and Applications, 810–
818. IOS Press.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016b.
An empirical comparison of the hardness of multi-agent path
finding under the makespan and the sum of costs objectives.
In Baier, J. A., and Botea, A., eds., Proceedings of the Ninth
Annual Symposium on Combinatorial Search, SOCS 2016,
Tarrytown, NY, USA, July 6-8, 2016., 145–147. AAAI Press.
Surynek, P. 2009. A novel approach to path planning for
multiple robots in bi-connected graphs. In 2009 IEEE In-
ternational Conference on Robotics and Automation, ICRA
2009, Kobe, Japan, May 12-17, 2009, 3613–3619. IEEE.

Surynek, P. 2014. Compact representations of cooperative
path-finding as SAT based on matchings in bipartite graphs.
In 26th IEEE International Conference on Tools with Artifi-
cial Intelligence, ICTAI 2014, Limassol, Cyprus, November
10-12, 2014, 875–882. IEEE Computer Society.
van den Berg, J.; Snoeyink, J.; Lin, M. C.; and Manocha,
D. 2009. Centralized path planning for multiple robots: Op-
timal decoupling into sequential plans. In Trinkle, J.; Mat-
suoka, Y.; and Castellanos, J. A., eds., Robotics: Science and
Systems V, University of Washington, Seattle, USA, June 28
- July 1, 2009. The MIT Press.
Wang, K. C., and Botea, A. 2008. Fast and memory-efficient
multi-agent pathfinding. In In ICAPS, 380–387.
Yu, J., and LaValle, S. M. 2013. Structure and intractabil-
ity of optimal multi-robot path planning on graphs. In des-
Jardins, M., and Littman, M. L., eds., Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA. AAAI Press.

17

